biphasic effect
Recently Published Documents


TOTAL DOCUMENTS

468
(FIVE YEARS 32)

H-INDEX

43
(FIVE YEARS 2)

Author(s):  
Priyanka Pal ◽  
Samarjit Jana ◽  
Ipsita Biswas ◽  
Deba Prasad Mandal ◽  
Shamee Bhattacharjee
Keyword(s):  

2022 ◽  
Vol 12 ◽  
Author(s):  
Donghao Gan ◽  
Wenxiang Cheng ◽  
Liqing Ke ◽  
Antonia RuJia Sun ◽  
Qingyun Jia ◽  
...  

Pirfenidone (PFD), a synthetic arsenic compound, has been found to inhibit angiogenesis at high concentrations. However, the biphasic effects of different PFD concentrations on angiogenesis have not yet been elucidated, and the present study used an in vitro model to explore the mechanisms underlying this biphasic response. The effect of PFD on the initial angiogenesis of vascular endothelial cells was investigated through a Matrigel tube formation assay, and the impact of PFD on endothelial cell migration was evaluated through scratch and transwell migration experiments. Moreover, the expression of key migration cytokines, matrix metalloproteinase (MMP)-2 and MMP-9, was examined. Finally, the biphasic mechanism of PFD on angiogenesis was explored through cell signaling and apoptosis analyses. The results showed that 10–100 μM PFD has a significant and dose-dependent inhibitory effect on tube formation and migration, while 10 nM–1 μM PFD significantly promoted tube formation and migration, with 100 nM PFD having the strongest effect. Additionally, we found that a high concentration of PFD could significantly inhibit MMP-2 and MMP-9 expression, while low concentrations of PFD significantly promoted their expression. Finally, we found that high concentrations of PFD inhibited EA.hy926 cell tube formation by promoting apoptosis, while low concentrations of PFD promoted tube formation by increasing MMP-2 and MMP-9 protein expression predominantly via the EGFR/p-p38 pathway. Overall, PFD elicits a biphasic effect on angiogenesis through different mechanisms, could be used as a new potential drug for the treatment of vascular diseases.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Florencia Savio ◽  
Romina Cardozo ◽  
Milagros Benitez ◽  
Carlos Costa ◽  
Gonzalo Ferreira

Cancer and cardiovascular diseases are the main causes of death in Uruguay and developed countries. In clinical practice, there is often the need to administrate chemotherapy with cisplatin (CTP) to patients with cardiovascular comorbidities. The aim of this work is to characterize the possible detrimental effects in cardiac function by the acute exposition to CPT using isolated heart and cardiomyocytes from guinea pigs (Cavia porcellus). All the procedures regarding animal experimentation were performed following approved protocols by the university ethics committee. Isolated hearts were placed in a Langendorff system and perfused with Tyrode 1.8 mM Ca2+ as control medium, or with extracellularly added CPT (0–100 µM). Tension was recorded with a gauge force transducer attached to the papillary muscle and electrical responses were measured with Ag-AgCl electrodes placed in surface extremes near the papillary muscle. Cardiomyocytes were isolated by enzymatic methods. Data were obtained by patch clamp and confocal microscopy with Rhodamine and Fluo dyes sensitive to Ca2+ binding. Non-parametric t tests were used for data comparison. The best fit of Hill’s equation to dose–response curves was done using nonlinear regression methods. In isolated hearts, CPT showed a biphasic effect over the development of tension, increasing up to 5–10 µM to decrease at higher concentrations. In isolated cardiomyocytes, Ca2+ currents were stimulated and inhibited by CPT in a similar dose. Confocal microscopy showed an increment and a reduction of relative fluorescence of the calcium-sensitive dyes with CPT as well. Our results suggest that CPT may affect cardiac contraction and automatism upon acute exposure of the heart, presumably by blocking L-type (Cav1.2) calcium channels and interference with molecules involved in maintaining the homeostasis of intracellular Ca2+.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4787-4787
Author(s):  
Fatemeh Majidi ◽  
Oumaima Stambouli ◽  
Ron-Patrick Cadeddu ◽  
Simon Kai Brille ◽  
Jasmin Ewert ◽  
...  

Abstract Introduction: Antitumor activity of the neddylation inhibitor pevonedistat has been documented in several hematologic and non-hematologic malignancies. Unexpectedly, Zhou et al (PNAS, 2016) discovered a dose-dependent biphasic effect of pevonedistat in solid tumor cell lines. While micromolar concentrations inhibited tumor cell growth, low nanomolar concentrations significantly increased cell proliferation and tumor stem cell self-renewal both in vitro and in vivo. The effect of low-dose pevonedistat has not yet been explored in the field of hematopoietic stem cell transplantation. Therefore, we evaluated how pevonedistat affects the viabiilty, growth and proportions of CD34 + cell subpopulations. In view of the emerging role of neddylation in the regulation of both innate and adaptive immunity, we also investigated the influence of pevonedistat on T-cell activation to explore a potentially beneficial effect on posttransplant immune complications. Methods and Results: Using the WST-1 assay we confirmed the biphasic effect of pevonedistat on normal mobilized CD34 + cells. Incubation for 72 h with 0.1 µM pevonedistat significantly increased metabolic activity as a surrogate parameter for proliferation, while 1.0 µM pevonedistat showed a cytotoxic effect. We explored the underlying mechanism for the low-dose effect. Since Zhou et al. previously showed that pevonedistat can promote tumor stem cell proliferation by inducing EGFR homodimerization, we used a proximity ligation assay and found that 0.1 µM pevonedistat induced EGFR homodimerization in normal mobilized CD34 + cells, too. In addition to homodimerization, we also looked at phosphorylation at Tyr1068, a marker of EGFR activation. By flow cytometry, we showed that phosphorylation was increased by 0.01 µM and 0.1 µM pevonedistat. Using an ELISA-based transcription assay, we also observed a biphasic effect of pevonedistat on c-Myc expression, which is regarded as a marker of 'stemness'. Incubation with pevonedistat for 72 hrs at 0.01 and 0.1 µM stimulated expression of c-Myc, whereas incubation at 1.0 µM downregulated c-Myc. Fractions of hematopoietic stem and progenitor cell (HSPC) subpopulations were measured in CD34 + cells from cord blood after incubation with 0.01, 0.1 and 1.0 µM pevonedistat. Flow cytometry was performed using antibodies against CD34, CD45RA and CD133, as well as 7-AAD for testing cell viability. Exposure to pevonedistat for 72 hrs at 0.1 µM caused an increase in the number of CD34 + cells compared to vehicle-treated CD34+ cells at 72 h as well as compared to initial number of CD34+ cells, whereas 1.0 µM caused a significant decrease. The absolute number of multipotent progenitors (MPP) (CD34 +CD133 +CD45RA -) remained relatively stable at all concentrations, while lympho-myeloid progenitors (LMPP) (CD34+CD133+CD45RA+) and late progenitors (LP) (CD34+CD133-CD45RA+) increased slightly with 0.1 µM pevonedistat compared with controls. However, a significant decrease in LMPP and LP cell numbers was observed at 1.0 µM. Different concentrations of pevonedistat were tested for their capability to modulate allogeneically stimulated T cell activation in a multi-donor mixed lymphocyte reaction (mdMLR) assay in vitro. Mesenchymal stromal cells (MSCs)-derived extracellular vesicles (MSC-EV) were used as internal immuno-modulatory and non-immuno-modulatory controls in the assay. After 5 days, alterations in the immune cell composition were analyzed by flow cytometry. Pevonedistat was not toxic for MNCs in the mdMLR. However, it decreased the number of activated (CD25high CD54+) CD4+ cells and CD8+ cells. Conclusions: One of the problems in the post-transplant period is a rapid decline in MPP numbers, associated with increased risk of engraftment failure. We showed that low-dose pevonedistat (0.1 µM) is capable of increasing the number of CD34 + cells in vitro while keeping the absolute number of MPPs stable. This finding, together with the observed increase in c-Myc expression, suggests that pevonedistat may help to preserve 'stemness' of CD34+ donor cells, thus supporting engraftment of hematopoietic stem and progenitor cells. Furthermore, the immunosuppressive effects revealed by mdMLR suggest that low-dose pevonedistat may also play a useful immunomodulatory role in the post-transplant setting to potentially reduce the risk of graft-versus-host disease. Figure 1 Figure 1. Disclosures Majidi: Takeda: Research Funding. Germing: Jazz Pharmaceuticals: Honoraria; Bristol-Myers Squibb: Honoraria, Other: advisory activity, Research Funding; Celgene: Honoraria; Novartis: Honoraria, Research Funding; Janssen: Honoraria. Zeiser: Incyte, Mallinckrodt, Novartis: Honoraria, Speakers Bureau. Gattermann: Celgene: Honoraria; Takeda: Research Funding; Novartis: Honoraria.


Author(s):  
Mhd Yousuf Yassouf ◽  
Xu Zhang ◽  
Zisheng Huang ◽  
Da Zhai ◽  
Reiko Sekiya ◽  
...  

Author(s):  
Joachim Neumann ◽  
Denise Schwarzer ◽  
Charlotte Fehse ◽  
Rebecca Schwarz ◽  
Margareta Marusakova ◽  
...  

AbstractIn the past, we generated transgenic mice that overexpress the human histamine 2 (H2)-receptor (H2-TG) or that overexpress the human serotonin 4 (5-HT4)-receptor (5-HT4-TG) in the heart. Here, we crossbred these lines of mice to generate double transgenic mice that overexpress both receptors (DT). This was done to study a conceivable interaction between these receptors in the mouse heart as a model for the human heart. When in left atria, initially, force of contraction was elevated maximally with 1 µM serotonin, and subsequently, histamine was cumulatively applied; a biphasic effect of histamine was noted: the force of contraction initially decreased, maximally at 10 nM histamine, and thereafter, the force of contraction increased again at 1 µM histamine. Notably, functional interaction between 5-HT and histamine was also identified in isolated electrically stimulated trabeculae carneae from human right atrium (obtained during cardiac surgery). These functional and biochemical data together are consistent with a joint overexpression of inotropically active H2-receptors and 5-HT4-receptors in the same mouse heart. We also describe an antagonistic interaction on the force of contraction of both receptors in the mouse atrium (DT) and in the human atrial muscle strips. We speculate that via this interaction, histamine might act as a “brake” on the cardiac actions of 5-HT via inhibitory GTP-binding proteins acting on the activity of adenylyl cyclase.


Author(s):  
Peter A.C. McPherson ◽  
Niamh McKenna ◽  
Dílis Clare
Keyword(s):  

2021 ◽  
Vol 118 (34) ◽  
pp. e2023572118
Author(s):  
Ria L. Dinsdale ◽  
Tanadet Pipatpolkai ◽  
Emilio Agostinelli ◽  
Angela J. Russell ◽  
Phillip J. Stansfeld ◽  
...  

TMEM16A Ca2+-activated chloride channels are involved in multiple cellular functions and are proposed targets for diseases such as hypertension, stroke, and cystic fibrosis. This therapeutic endeavor, however, suffers from paucity of selective and potent modulators. Here, exploiting a synthetic small molecule with a biphasic effect on the TMEM16A channel, anthracene-9-carboxylic acid (A9C), we shed light on sites of the channel amenable for pharmacological intervention. Mutant channels with the intracellular gate constitutively open were generated. These channels were entirely insensitive to extracellular A9C when intracellular Ca2+ was omitted. However, when physiological Ca2+ levels were reestablished, the mutants regained sensitivity to A9C. Thus, intracellular Ca2+ is mandatory for the channel response to an extracellular modulator. The underlying mechanism is a conformational change in the outer pore that enables A9C to enter the pore to reach its binding site. The explanation of this structural rearrangement highlights a critical site for pharmacological intervention and reveals an aspect of Ca2+ gating in the TMEM16A channel.


2021 ◽  
Author(s):  
Maria Paula Cornejo ◽  
Raphael Denis ◽  
Guadalupe Garcia Romero ◽  
Gimena Fernandez ◽  
Mirta Reynaldo ◽  
...  

Abstract Ghrelin is a stomach-derived peptide hormone with salient roles in the regulation of energy balance and metabolism. Notably, ghrelin is recognized as the most powerful known circulating orexigenic hormone. Here, we systematically investigated the effects of ghrelin on energy homeostasis and found that ghrelin primarily induces a biphasic effect on food intake that has indirect consequences on energy expenditure and nutrient partitioning. We also found that ghrelin-induced biphasic effect on food intake requires the integrity of Agouti-related peptide/neuropeptide Y-producing neurons of the hypothalamic arcuate nucleus (ARH), which seem to display a long-lasting activation after a single systemic injection of ghrelin. Finally, we found that different autonomic, hormonal and metabolic satiation signals transiently counteract ghrelin-induced food intake. Based on our observations, we propose a heuristic model to describe how the orexigenic effect of ghrelin and the anorectic food intake-induced rebound sculpt a timely constrain feeding response to ghrelin.


Sign in / Sign up

Export Citation Format

Share Document