corrosion studies
Recently Published Documents


TOTAL DOCUMENTS

839
(FIVE YEARS 105)

H-INDEX

40
(FIVE YEARS 5)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Vanessa Meinhold ◽  
Dominik Höhlich ◽  
Thomas Mehner ◽  
Thomas Lampke

The electrodeposition of iron-nickel-chromium coatings is a more environmentally friendly and economical alternative to hard-chrome coatings made from chromium (VI) electrolytes and stainless-steel bulk materials. The aim of the study was to develop a suitable deposition method for thick and low-crack Fe-Cr-Ni coatings. Iron-nickel-chromium coatings were electrodeposited using a more ecological chromium (III) electrolyte with direct current (DC), stepped direct current, and pulse current (PC). The influence of the deposition method on the electrolyte aging, the alloy composition of the coating, and their microstructure was investigated. Corrosion studies of the Fe-Cr-Ni coatings in 3.5% NaCl solution were performed using polarization tests. Furthermore, hardness measurements and scratch tests were carried out to determine the adhesion strength. Phase analyses were performed by X-ray diffraction, and the chemical composition and microstructure were characterized by scanning electron microscopy. Using the stepped DC and PC method, crack-free Fe-Cr-Ni coatings were successfully deposited.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4319
Author(s):  
Hany S. Abdo ◽  
Ubair Abdus Samad ◽  
Mohamed S. Abdo ◽  
Hend I. Alkhammash ◽  
Muhammad Omer Aijaz

This study is focuses on the investigation of the effect of using TiO2 short nanofibers as a reinforcement of an Al matrix on the corrosion characteristics of the produced nanocomposites. The TiO2 ceramic nanofibers used were synthesized via electrospinning by sol-gel process, then calcinated at a high temperature to evaporate the residual polymers. The fabricated nanocomposites contain 0, 1, 3 and 5 wt.% of synthesized ceramic nanofibers (TiO2). Powder mixtures were mixed for 1 h via high-energy ball milling in a vacuum atmosphere before being inductively sintered through a high-frequency induction furnace at 560 °C for 6 min. The microstructure of the fabricated samples was studied by optical microscope and field emission scanning electron microscope (FESEM) before and after corrosion studies. Corrosion behavior of the sintered samples was evaluated by both electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques (PPT) in 3.5% NaCl solution for one hour and 24-h immersion times. The results show that even though the percentage of ceramic nanofibers added negatively control corrosion resistance, it is still possible to increase resistance against corrosion for the fabricated nanocomposite by more than 75% in the longer exposure time periods.


2021 ◽  
pp. 139756
Author(s):  
Eirini-Maria Paschalidou ◽  
Rebecka Lindblad ◽  
Leon Zendejas Medina ◽  
Dennis Karlsson ◽  
Ulf Jansson ◽  
...  

2021 ◽  
Vol 1167 ◽  
pp. 13-22
Author(s):  
C.C. Soumya ◽  
K.E. George ◽  
Sunil K. Narayanankutty

Organic acid doped polyaniline (PANI), hybrid with silica gel (SiG) and composites with metal primer have been prepared by chemical oxidative polymerization of double-distilled aniline in an acidic medium at 0-5 °C in an ice bath using ammonium persulphate as oxidant and p-toluene sulphonic acid (p-TSA) as the dopant. The anticorrosive property of PANI coatings containing alkyd primer, zinc chromate and silica gel was investigated. The coatings were characterized by FTIR spectroscopy, scanning electron microscopy and electrochemical impedance spectroscopy. The corrosion studies were carried out in a 3.5 wt% NaCl solution. On introduction of SiG, PANI, and PANI-SiG hybrid, the corrosion current decreased from 0.03626 μA to 0.007856 μA, 0.02042 μA, and 0.011 μA, respectively. The penetration rates calculated in mm/yr. for the composites: SiG/Primer, PANI/Primer and PANI-SiG/Primer were 0.430× 10-4, 1.110× 10-4, and 0.599 × 10-4, respectively and that of neat primer was 1.977 × 10-4. The corrosion protection efficiency of the primer was improved up to 7% on introduction of the PANI-based fillers. The 5 wt% of 1:1 PANI-SiG/primer composite, which contains 2.5wt% of PANI, showed better results than that of 5wt% PANI in Primer and these results are very close to that of 5wt% SiG/Primer composites.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
D. Elango ◽  
A. Daniel Das ◽  
S. P. Kumaresh Babu ◽  
S. Natarajan ◽  
A. Yeshitla

In this present research, the coatings of SA209-T1 using high velocity oxygen fuel were employed for the application of boiler tubes. Due to the adaptation of corrosion easy in boiler material, the research of those properties is significant because of its criticality and functionality during the service time. A right coating was found and applied on the SA209-T1 surface against corrosive environments. Good corrosion resistance is achieved by WC-flyash coatings applied on SA209-T1 substrate. The 90% WC-10% flyash coatings were found to be more protective followed by SA209-T1 steel. WC-flyash covering was tracked down so that the covering is compelling to secure the SA209-T1 steel substrate. It is reasoned that the arrangement of NiO, Cr2O3, CoO, and NiCr2O4 could add to the advancement of consumption opposition in coatings. The steel of uncoated endured erosion as extraordinary stripping and spalling of the scale, which could be because of the development of Fe2O3 oxide scale unprotectively. This paper reveals the performance, applications, and development of 90wt.% WC and 10wt.% fly ash through HVOF coating in SA209-T1 for electrochemical corrosion studies at room temperature.


Author(s):  
Paramasivam Sathish Kumar ◽  
Poornanantan Gopal ◽  
Thamilkolundhu Senthilkumar

Abstract In this paper, Hafnium Carbide (HfC) reinforced ZE41 Magnesium Matrix Composites (MMCs) were prepared by using stir casting method. Using three different reinforcement percentages of HfC such as 5%, 10% and 15% by wt., ZE41-HfC MMCs were prepared. The mechanical characteristics of ZE41-HfC MMCs were evaluated by subjecting them to tensile and surface micro-hardness studies. Using X-Ray diffraction (XRD) studies, chemical compounds formed in the interfacial layer between HfC & ZE41 Mg was observed. Using optical microscopy (OM) and scanning electron microscopy (SEM), the surface modifications in the composites due to HfC addition was studied. Using electron backscatter diffraction analysis (EBSD), the changes in particle grain sizes and orientation of ZE41-HfC MMCs were studied. Energy Dispersive Spectroscopy (EDS) analysis was used to identify the variations in elemental composition of the prepared ZE41-HfC MMCs. ZE41-HfC MMCs were subjected to drilling studies for identifying the variations in cutting forces. Using electrochemical studies, the corrosion resistance of ZE41-HfC MMCs was observed. SEM images of corroded ZE41-HfC MMCs revealed micro cracks and dense pits near HfC agglomerated region.


2021 ◽  
Vol 52 (11) ◽  
pp. 1185-1200
Author(s):  
W. Emori ◽  
S.L. Jiang ◽  
Y.G. Zheng ◽  
P. C. Okonkwo ◽  
A. I. Obike ◽  
...  

2021 ◽  
pp. 109995
Author(s):  
Weijie Zhao ◽  
R. Prasath Babu ◽  
Tingru Chang ◽  
Inger Odnevall ◽  
Peter Hedström ◽  
...  

2021 ◽  
Vol MA2021-02 (10) ◽  
pp. 593-593
Author(s):  
Raghu Srinivasan ◽  
Tyler Cushman

Sign in / Sign up

Export Citation Format

Share Document