tumour necrosis factor production
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 2)

H-INDEX

20
(FIVE YEARS 0)

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Erika Prašnikar ◽  
Tanja Kunej ◽  
Mario Gorenjak ◽  
Uroš Potočnik ◽  
Borut Kovačič ◽  
...  

Abstract Background Women with uterine adenomyosis seeking assisted reproduction have been associated with compromised endometrial receptivity to embryo implantation. To understand the mechanisms involved in this process, we aimed to compare endometrial transcriptome profiles during the window of implantation (WOI) between women with and without adenomyosis. Methods We obtained endometrial biopsies LH-timed to the WOI from women with sonographic features of adenomyosis (n=10) and controls (n=10). Isolated RNA samples were subjected to RNA sequencing (RNA-seq) by the Illumina NovaSeq 6000 platform and endometrial receptivity classification with a molecular tool for menstrual cycle phase dating (beREADY®, CCHT). The program language R and Bioconductor packages were applied to analyse RNA-seq data in the setting of the result of accurate endometrial dating. To suggest robust candidate pathways, the identified differentially expressed genes (DEGs) associated with the adenomyosis group in the receptive phase were further integrated with 151, 173 and 42 extracted genes from published studies that were related to endometrial receptivity in healthy uterus, endometriosis and adenomyosis, respectively. Enrichment analyses were performed using Cytoscape ClueGO and CluePedia apps. Results Out of 20 endometrial samples, 2 were dated to the early receptive phase, 13 to the receptive phase and 5 to the late receptive phase. Comparison of the transcriptomics data from all 20 samples provided 909 DEGs (p<0.05; nonsignificant after adjusted p value) in the adenomyosis group but only 4 enriched pathways (Bonferroni p value < 0.05). The analysis of 13 samples only dated to the receptive phase provided suggestive 382 DEGs (p<0.05; nonsignificant after adjusted p value) in the adenomyosis group, leading to 33 enriched pathways (Bonferroni p value < 0.05). These included pathways were already associated with endometrial biology, such as “Expression of interferon (IFN)-induced genes” and “Response to IFN-alpha”. Data integration revealed pathways indicating a unique effect of adenomyosis on endometrial molecular organization (e.g., “Expression of IFN-induced genes”) and its interference with endometrial receptivity establishment (e.g., “Extracellular matrix organization” and “Tumour necrosis factor production”). Conclusions Accurate endometrial dating and RNA-seq analysis resulted in the identification of altered response to IFN signalling as the most promising candidate of impaired uterine receptivity in adenomyosis.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Aidan Falvey ◽  
Fabrice Duprat ◽  
Thomas Simon ◽  
Sandrine Hugues-Ascery ◽  
Silvia V. Conde ◽  
...  

Abstract Background The carotid bodies and baroreceptors are sensors capable of detecting various physiological parameters that signal to the brain via the afferent carotid sinus nerve for physiological adjustment by efferent pathways. Because receptors for inflammatory mediators are expressed by these sensors, we and others have hypothesised they could detect changes in pro-inflammatory cytokine blood levels and eventually trigger an anti-inflammatory reflex. Methods To test this hypothesis, we surgically isolated the carotid sinus nerve and implanted an electrode, which could deliver an electrical stimulation package prior and following a lipopolysaccharide injection. Subsequently, 90 min later, blood was extracted, and cytokine levels were analysed. Results Here, we found that carotid sinus nerve electrical stimulation inhibited lipopolysaccharide-induced tumour necrosis factor production in both anaesthetised and non-anaesthetised conscious mice. The anti-inflammatory effect of carotid sinus nerve electrical stimulation was so potent that it protected conscious mice from endotoxaemic shock-induced death. In contrast to the mechanisms underlying the well-described vagal anti-inflammatory reflex, this phenomenon does not depend on signalling through the autonomic nervous system. Rather, the inhibition of lipopolysaccharide-induced tumour necrosis factor production by carotid sinus nerve electrical stimulation is abolished by surgical removal of the adrenal glands, by treatment with the glucocorticoid receptor antagonist mifepristone or by genetic inactivation of the glucocorticoid gene in myeloid cells. Further, carotid sinus nerve electrical stimulation increases the spontaneous discharge activity of the hypothalamic paraventricular nucleus leading to enhanced production of corticosterone. Conclusion Carotid sinus nerve electrostimulation attenuates inflammation and protects against lipopolysaccharide-induced endotoxaemic shock via increased corticosterone acting on the glucocorticoid receptor of myeloid immune cells. These results provide a rationale for the use of carotid sinus nerve electrostimulation as a therapeutic approach for immune-mediated inflammatory diseases.


Rheumatology ◽  
2008 ◽  
Vol 48 (1) ◽  
pp. 32-38 ◽  
Author(s):  
P. F. Sumariwalla ◽  
C. D. Palmer ◽  
L. B. Pickford ◽  
M. Feldmann ◽  
B. M. J. Foxwell ◽  
...  

2008 ◽  
Vol 79 (1) ◽  
pp. 62-66 ◽  
Author(s):  
A. SCHATTNER ◽  
M. STEINBOCK ◽  
R. TEPPER ◽  
A. SCHONFELD ◽  
N. VAISMAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document