systematic feature
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Vol 13 (2) ◽  
pp. 1-20
Author(s):  
Byron Marshall ◽  
Michael Curry ◽  
Robert E. Crossler ◽  
John Correia

Survey items developed in behavioral Information Security (InfoSec) research should be practically useful in identifying individuals who are likely to create risk by failing to comply with InfoSec guidance. The literature shows that attitudes, beliefs, and perceptions drive compliance behavior and has influenced the creation of a multitude of training programs focused on improving ones’ InfoSec behaviors. While automated controls and directly observable technical indicators are generally preferred by InfoSec practitioners, difficult-to-monitor user actions can still compromise the effectiveness of automatic controls. For example, despite prohibition, doubtful or skeptical employees often increase organizational risk by using the same password to authenticate corporate and external services. Analysis of network traffic or device configurations is unlikely to provide evidence of these vulnerabilities but responses to well-designed surveys might. Guided by the relatively new IPAM model, this study administered 96 survey items from the Behavioral InfoSec literature, across three separate points in time, to 217 respondents. Using systematic feature selection techniques, manageable subsets of 29, 20, and 15 items were identified and tested as predictors of non-compliance with security policy. The feature selection process validates IPAM's innovation in using nuanced self-efficacy and planning items across multiple time frames. Prediction models were trained using several ML algorithms. Practically useful levels of prediction accuracy were achieved with, for example, ensemble tree models identifying 69% of the riskiest individuals within the top 25% of the sample. The findings indicate the usefulness of psychometric items from the behavioral InfoSec in guiding training programs and other cybersecurity control activities and demonstrate that they are promising as additional inputs to AI models that monitor networks for security events.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Chuan Yue ◽  
Lide Wang ◽  
Dengrui Wang ◽  
Ruifeng Duo ◽  
Haipeng Yan

The train communication Ethernet (TCE) of modern intelligent trains is under an ever-increasing threat of serious network attacks. Denial of service (DoS) and man in the middle (MITM), the two most destructive attacks against TCE, are difficult to detect by conventional methods. Aiming at their highly time-correlated properties, a novel dynamic temporal convolutional network-based intrusion detection system (DyTCN-IDS) is proposed in this paper to detect these temporal attacks. A semiphysical TCE testbed that is capable of simulating real situations in TCE-based trains is first built to generate an effective dataset for training and testing. DyTCN-IDS consists of two phases, and in the first phase, systematic feature engineering is designed to optimize the dataset. In the second phase, a basic detection model that is good at dealing with temporal features is first built by utilizing the temporal convolutional network with several architectural optimizations. Then, in order to decrease the computational consumption waste on network packet sequences with different lengths of inner temporal relationships, dynamic neural network technology is further adopted to optimize the basic detection model. Diverse experiments were carried out to evaluate the proposed system from different angles. The experimental results indicate that our system is easy to train, converges fast, costs less computational resources, and achieves satisfying detection performance with a macro false alarm rate of 0.09%, a macro F-score of 99.39%, and an accuracy of 99.40%. Compared to some canonical DL-based IDS and some latest IDS, our system acquires the best overall detection performance as well.


Author(s):  
Darshak Gadara ◽  
Katerina Coufalikova ◽  
Juraj Bosak ◽  
David Smajs ◽  
Zdenek Spacil

2021 ◽  
Vol 15 ◽  
Author(s):  
Saeed Montazeri Moghadam ◽  
Elana Pinchefsky ◽  
Ilse Tse ◽  
Viviana Marchi ◽  
Jukka Kohonen ◽  
...  

Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8–16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81–100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.


2021 ◽  
Vol 10 (4) ◽  
pp. 211
Author(s):  
Suyoung Park ◽  
Dongryeol Ryu ◽  
Sigfredo Fuentes ◽  
Hoam Chung ◽  
Mark O’Connell ◽  
...  

There is a growing concern about water scarcity and the associated decline in Australia’s agricultural production. Efficient water use as a natural resource requires more precise and adequate monitoring of crop water use and irrigation scheduling. Therefore, accurate estimations of evapotranspiration (ET) at proper spatial–temporal scales are critical to understand the crop water demand and uptake and to enable optimal irrigation scheduling. Remote sensing (RS)-based ET estimation has been adopted as a method for large-scale applications when the detailed spatial representation of ET is required. This research aimed to estimate instantaneous ET using very-high-resolution (VHR) multispectral and thermal imagery (GSD < 8 cm) collected using a single flight of a UAV over a high-density peach orchard with a discontinuous canopy. The energy balance component estimation was based on the high-resolution mapping of evapotranspiration (HRMET) model. A tree-by-tree ET map was produced using the canopy surface temperature and the leaf area index (LAI) resampled at the corresponding scale via a systematic feature segmentation method based on pure canopy extraction. Results showed a strong linear relationship between the estimated ET and the leaf transpiration (n = 42) measured using a gas exchange sensor, with a coefficient of determination (R2) of 0.89. Daily ET (5.5 mm d−1) derived from the instantaneous ET map was comparable with daily crop ET (6.4 mm d−1) determined by the meteorological approach over the study site. The proposed approach has important implications for mapping tree-by-tree ET over horticultural fields using VHR imagery.


Author(s):  
Simon Mackenzie

This chapter begins by recounting common themes across global trafficking markets, and considering the evidence for links and overlaps between them, using three parameters: geographical; transit; and exchange of one trafficked commodity for another. Then we revisit the spectrum of enterprise concept that has been a central thread of analysis of each trafficking market throughout the book. Trafficking is discussed as a form of illicit commodification, as objects and people are transformed into things that can be bought and sold. Commodification is a central feature of contemporary market society, and it encourages an objectification of the things and people being trafficked, which come to be seen merely as items that can be exploited by business-minded entrepreneurs willing to break the law. Through these processes of commodification and exploitation, trafficking is seen as a systematic feature of globalised neoliberal economy and society. The illegal part of the spectrum of enterprise turns a mirror on modern society and economy that highlights some of the worst features of capitalist life: including a business orientation that is systematically indifferent to harmful effects.


Database ◽  
2020 ◽  
Author(s):  
Dandan Sun ◽  
Xingxiang Cheng ◽  
Yu Tian ◽  
Shaozhen Ding ◽  
Dachuan Zhang ◽  
...  

Abstract Addition of chemical structural information in enzymatic reactions has proven to be significant for accurate enzyme function prediction. However, such chemical data lack systematic feature mining and hardly exist in enzyme-related databases. Therefore, global mining of enzymatic reactions will offer a unique landscape for researchers to understand the basic functional mechanisms of natural bioprocesses and facilitate enzyme function annotation. Here, we established a new knowledge base called EnzyMine, through which we propose to elucidate enzymatic reaction features and then link them with sequence and structural annotations. EnzyMine represents an advanced database that extends enzyme knowledge by incorporating reaction chemical feature strategies, strengthening the connectivity between enzyme and metabolic reactions. Therefore, it has the potential to reveal many new metabolic pathways involved with given enzymes, as well as expand enzyme function annotation. Database URL: http://www.rxnfinder.org/enzymine/


2018 ◽  
Vol 35 (15) ◽  
pp. 2634-2643 ◽  
Author(s):  
Meshari Alazmi ◽  
Hiroyuki Kuwahara ◽  
Othman Soufan ◽  
Lizhong Ding ◽  
Xin Gao

Abstract Motivation Accurate and wide-ranging prediction of thermodynamic parameters for biochemical reactions can facilitate deeper insights into the workings and the design of metabolic systems. Results Here, we introduce a machine learning method with chemical fingerprint-based features for the prediction of the Gibbs free energy of biochemical reactions. From a large pool of 2D fingerprint-based features, this method systematically selects a small number of relevant ones and uses them to construct a regularized linear model. Since a manual selection of 2D structure-based features can be a tedious and time-consuming task, requiring expert knowledge about the structure-activity relationship of chemical compounds, the systematic feature selection step in our method offers a convenient means to identify relevant 2D fingerprint-based features. By comparing our method with state-of-the-art linear regression-based methods for the standard Gibbs free energy prediction, we demonstrated that its prediction accuracy and prediction coverage are most favorable. Our results show direct evidence that a number of 2D fingerprints collectively provide useful information about the Gibbs free energy of biochemical reactions and that our systematic feature selection procedure provides a convenient way to identify them. Availability and implementation Our software is freely available for download at http://sfb.kaust.edu.sa/Pages/Software.aspx. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document