solar radiation flux
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 16)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 904 ◽  
pp. 27-33
Author(s):  
A.V. Sedelnikov ◽  
V.V. Serdakova

The author of this scientific paper studies the stress-strain state of the solar panel of a small spacecraft after a temperature shock. The temperature shock is caused by the entry or exit of a small spacecraft into or out the Earth's shadow. In this work is considered a one-dimensional model of thermal conductivity. It is assumed that the solar radiation flux falls properly on the solar panel. Violation of normality due to deformations is neglected. A special feature of this work is to take into account the actual fixing of the solar panel. The boundary conditions in the form of a seal are preserved. However, the mobility of the smallest spacecraft is taken into account as a result of the occurrence of a longitudinal force in the solar panel during a temperature shock. The results are compared with the simulation data without taking into account the mobility of the small spacecraft. The results of this work can be used in the design of small spacecraft for technological purposes to meet the requirements for microaccelerations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Ebrahim Foulaadvand ◽  
Amir Aghamohammadi ◽  
Parvin Karimi ◽  
Hadi Borzouei

AbstractWe analytically, experimentally and computationally explore the solar radiation flux distribution in the interior region of a spherical mirror and compare it to that of a paraboloidal one with the same aperture area. Our investigation has been performed in the framework of geometrical optics. It is shown that despite one can assign a quasi focus, at half the radius, to a spherical mirror, the light concentration occurs as well on an extended line region which starts at half-radius on the optical axis. In contrast to a paraboloidal concentrator, a spherical mirror can concentrate the radiation parallel to its optical axis both in a point-focus and in a line-focus manner. The envelope of the reflected rays is also obtained. It is shown that the flux distribution has an axial symmetry. The radial dependence of the flux on a flat circular receiver is obtained. The flux longitudinal dependence is shown to exhibit three distinctive regions in the interval [0, R] (R is mirror radius). We obtain the radiational (optical) concentration ratio characteristics and find the optimal location of the flat receiver of a given size at which the concentration ratio is maximised. In contrast to a parabolic mirror, it is shown that this location depends on the receiver size. Our findings offers that in spherical mirrors one can alternatively use a line receiver and gains a considerable thermal energy harvest. Our results are supported by Monte Carlo ray tracing performed by Zemax optical software. Experimental validation has been performed in lab with a silver-coated lens as the spherical mirror.


2021 ◽  
Vol 2054 (1) ◽  
pp. 012051
Author(s):  
B Charles Divyateja ◽  
K S Unnikrishnan ◽  
B Rohinikumar

Abstract Phase change materials (PCMs) can effectively cool photovoltaic (PV) panels by the passive cooling technique, thereby enhancing its direct energy conversion efficiency. However, generally, PCMs have low thermal conductivity, and different methods can be employed to improve the heat transfer rate. Cooling techniques based on phase change materials (PCMs) enhanced by nano-sized solid particles are very promising. In this paper, a mathematical model is developed to simulate the performance analysis of PV attached with nano-enhanced PCM (NEPCM) integrated with fins and compare the same with that of pure PCM case. The system is oriented in a horizontal position and subjected to constant solar radiation flux of 1000 W/m 2. The PCM selected is RT25HC, and the nanoparticle used is CuO for the numerical study. The effects of volumetric concentrations (0%, 2%, and 4%) and fin number on the performance of the system are investigated numerically. Results show that adding nanoparticles is more effective in no fin case compared to finned cases. The maximum reduction in average PV temperature of 2.02 °C is obtained for no fin case with the nanoparticles’ volumetric concentration of 4%. Further enhancement in liquid fraction and energy storage in NEPCM is also achieved compared to the pure PCM system.


The principles of construction and operation of the main concentrating systems, including non-followable modules, are reviewed, and the work of the concentrators is analyzed. An analytical review of modern facade-integrated photovoltaic technologies was carried out, and their classification was given. The known methods for calculating a flat (two-dimensional) scheme for passing the sun's rays through a louvered heliostat make it impossible to assess the real effectiveness of using louvered heliostats with non-tracking solar concentrators, which makes it necessary to consider the practically important three-dimensional problem of calculating the solar radiation flux on the receiving surface of an unfollowing parabolic-cylindrical solar concentrator with louver heliostat.


2020 ◽  
Vol 18 (4) ◽  
pp. 732-736
Author(s):  
Ko Ye ◽  
Polina Pronina ◽  
Pavel Polyakov

Modelling the extraneous heat exchange of spacecraft using solar radiation simulation facility and simulators of the planetary radiation field in several cases is an intractable problem not only in technical but also in methodological terms. For some technical reasons, solar radiation simulator is stationary. Consequently, to reproduce a possible change in the orientation of the test object relative to the solar radiation flux, it is necessary to equip the thermal vacuum unit with devices that allow the test object to be rotated at least about two axes. In this paper, a mathematical model and a method for solving the problem of heat transfer in a multilayer structure of screen-vacuum thermal insulation under the influence of solar radiation is proposed. A method is proposed for the numerical solution of a normal system of nonlinear differential equations using the linearisation of nonlinear terms. Various results of numerical modelling were obtained, which indicate the adequacy of the proposed mathematical model. It has been revealed that high-inertia thermal insulation of sufficient thickness is required to stabilise the thermal state inside the spacecraft.


2019 ◽  
Vol 5 (4) ◽  
pp. 110-116
Author(s):  
Saule Mukasheva ◽  
Vitaliy Kapytin ◽  
Andrey Malimbaev

The paper presents the results of a study of the behavior of ionospheric parameters of the total electron content, I(t), and electron density in the maximum F2 layer, Nm, over Almaty (Kazakhstan) [43.25° N; 76.92° E] in 1999–2013. The time interval under study covers different solar activity levels. We have shown that at F10.7>175 in summer and at F10.7>225 in winter there is a saturation effect, i.e. with increasing solar activity level values of I(t) do not increase. The observed nonlinear relationship between the total electron content of the ionosphere and the solar radiation flux F10.7 results from the nonlinear relationship between the solar ultraviolet radiation and the solar radiation flux. The study of the variability of the mid-latitude ionosphere parameters during different solar and geomagnetic activity levels has shown that the standard deviation ç(x) and average shift Xave of I(t) and Nm fluctuations relative to the quiet level weakly depend on solar activity, but greatly depend on geomagnetic activity when F10.7<100.


2019 ◽  
Vol 5 (4) ◽  
pp. 91-96
Author(s):  
Saule Mukasheva ◽  
Vitaliy Kapytin ◽  
Andrey Malimbaev

The paper presents the results of a study of the behavior of ionospheric parameters of the total electron content, I(t), and electron density in the maximum F2 layer, Nm, over Almaty (Kazakhstan) [43.25° N; 76.92° E] in 1999–2013. The time interval under study covers different solar activity levels. We have shown that at F10.7>175 in summer and at F10.7>225 in winter there is a saturation effect, i.e. with increasing solar activity level values of I(t) do not increase. The observed nonlinear relationship between the total electron content of the ionosphere and the solar radiation flux F10.7 results from the nonlinear relationship between the solar ultraviolet radiation and the solar radiation flux. The study of the variability of the mid-latitude ionosphere parameters during different solar and geomagnetic activity levels has shown that the standard deviation ç(x) and average shift Xave of I(t) and Nm fluctuations relative to the quiet level weakly depend on solar activity, but greatly depend on geomagnetic activity when F10.7<100.


Sign in / Sign up

Export Citation Format

Share Document