bony fishes
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 62)

H-INDEX

43
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ioanna Katsiadaki ◽  
Tamar I. Schwarz ◽  
Alex R. O. Cousins ◽  
Alexander P. Scott

Previous toxicokinetic studies have shown that mussels (Mytilus spp.) can readily absorb the three main mammalian sex steroids, estradiol (E2), testosterone (T) and progesterone (P) from water. They also have a strong ability to store E2 and the 5α-reduced metabolites of T and P in the form of fatty acid esters. These esters were shown to have half-lives that were measured in weeks (i.e. they were not subject to fast depuration). The present study looked at the toxicokinetic profile of two other common steroids that are found in water, the potent synthetic oestrogen, (ethinyl-estradiol) (EE2; one of the two components of ‘the pill’), and cortisol, a natural stress steroid in vertebrates. In the first three hours of uptake, tritiated EE2 was found to be taken up at a similar rate to tritiated E2. However, the levels in the water plateaued sooner than E2. The ability of the animals to both esterify and sulphate EE2 was found to be much lower than E2, but nevertheless did still take place. After 24 h of exposure, the majority of radiolabelled EE2 in the animals was present in the form of free steroid, contrary to E2, which was esterified. This metabolism was reflected in a much lower half-life (of only 15 h for EE2 in the mussels as opposed to 8 days for E2 and >10 days for T and P). Intriguingly, hardly any cortisol (in fact none at all in one of the experiments) was absorbed by the mussels. The implications of this finding in both toxicokinetic profiling and evolutionary significance (why cortisol might have evolved as a stress steroid in bony fishes) are discussed.


Author(s):  
Isabelle P. Maiditsch ◽  
Friedrich Ladich ◽  
Martin Heß ◽  
Christian M. Schlepütz ◽  
Tanja Schulz-Mirbach

Modern bony fishes possess a high morphological diversity in the auditory structures and their auditory capabilities. Yet, our knowledge of how the auditory structures such as the otoliths in the inner ears and the swim bladder work together remains elusive. Gathering experimental evidence on the in-situ motion of fish auditory structures while avoiding artifacts caused by surgical exposure of the structures has been challenging for decades. Synchrotron radiation-based tomography with high spatio-temporal resolution allows to study morphofunctional issues non-invasively in an unprecedented way. We therefore aimed to develop an approach that characterizes the moving structures in 4D (= three spatial dimensions+time). We designed a miniature standing wave tube-like setup to meet both the requirements of tomography and those of tank acoustics. With this new setup, we successfully visualized the motion of isolated otoliths and the auditory structures in zebrafish (Danio rerio) and the glass catfish (Kryptopterus vitreolus).


2021 ◽  
pp. 91-142
Author(s):  
Thodoris Argyriou

AbstractThe nowadays hyper-diverse clade of Actinopterygii (ray-finned bony fishes) is characterized by a long evolutionary history and an extremely rich global fossil record. This work builds upon 170 years of research on the fossil record of this clade in Greece. The taxonomy and spatiotemporal distribution of the ray-finned fish record of Greece are critically revisited and placed in an updated systematic and stratigraphic framework, while some new fossil data and interpretations are also provided. Greece hosts diverse ray-finned fish assemblages, which range in age from Lower Jurassic to Quaternary. Most known assemblages are of Miocene–Pliocene age and of marine affinities. A minimum of 32 families, followed by at least 34 genera and 22 species, have been recognized in Greece. From originally two named genera and seven species, only two fossil species, established on Greek material, are accepted as valid. Additional taxonomic diversity is anticipated, pending detailed investigations. From a taxonomic perspective, previous knowledge lies on preliminary or authoritative assessments of fossils, with many decades-old treatments needing revision. Little is known about Mesozoic–early Cenozoic occurrences or freshwater assemblages. Given the proven potential of the Greek fossil record, this chapter stresses the need for additional exploration and the establishment of permanent, curated collections of fossil fishes in Greek institutions. Directions for future research are discussed.


2021 ◽  
Author(s):  
Ricardo Iglesias‐Rios ◽  
Javier Lobón‐Cervià ◽  
Cesar Rogerio Leal Amaral ◽  
Rogerio Garber ◽  
Rosana Mazzoni

Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 70
Author(s):  
Subham Mukherjee ◽  
Oldřich Bartoš ◽  
Kamila Zdeňková ◽  
Petr Hanák ◽  
Petra Horká ◽  
...  

Parvalbumin is considered a major fish allergen. Here, we report the molecular evolution of the parvalbumin genes in bony fishes based on 19 whole genomes and 70 transcriptomes. We found unexpectedly high parvalbumin diversity in teleosts; three main gene types (pvalb-α, pvalb-β1, and pvalb-β2, including oncomodulins) originated at the onset of vertebrates. Teleosts have further multiplied the parvalbumin gene repertoire up to nine ancestral copies—two copies of pvalb-α, two copies of pvalb-β1, and five copies of pvalb-β2. This gene diversity is a result of teleost-specific whole-genome duplication. Two conserved parvalbumin genomic clusters carry pvalb-β1 and β2 copies, whereas pvalb-α genes are located separately in different linkage groups. Further, we investigated parvalbumin gene expression in 17 tissues of the common carp (Cyprinus carpio), a species with 21 parvalbumin genes in its genome. Two pvalb-α and eight pvalb-β2 copies are highly expressed in the muscle, while two alternative pvalb-α copies show expression in the brain and the testes, and pvalb-β1 is dominant in the retina and the kidney. The recent pairs of muscular pvalb-β2 genes show differential expression in this species. We provide robust genomic evidence of the complex evolution of the parvalbumin genes in fishes.


2021 ◽  
Vol 140 (1) ◽  
Author(s):  
Jorge D. Carrillo-Briceño ◽  
Orangel A. Aguilera ◽  
Aldo Benites-Palomino ◽  
Annie S. Hsiou ◽  
José L. O. Birindelli ◽  
...  

AbstractThe Miocene aquatic and terrestrial fossil record from western Amazonia constitute a clear evidence of the palaeoenvironmental diversity that prevailed in the area, prior to the establishment of the Amazon River drainage. During the Miocene, the region was characterized by a freshwater megawetland basin, influenced by episodic shallow-marine incursions. A fossil vertebrate collection from the middle Miocene strata of the Pebas Formation is here studied and described. This historical collection was recovered in 1912 along the banks of the Itaya River (Iquitos, Peru), during a scientific expedition led by two scientists of the University of Zurich, Hans Bluntschli and Bernhard Peyer. Our findings include a total of 34 taxa, including stingrays, bony fishes, turtles, snakes, crocodylians, and lizards. Fishes are the most abundant group in the assemblage (~ 23 taxa), including the first fossil record of the freshwater serrasalmids Serrasalmus, and Mylossoma, and the hemiodontid Hemiodus for the Pebas system, with the latter representing the first fossil be discovered for the entire Hemiodontidae. The presence of a representative of Colubroidea in the middle Miocene of Iquitos supports the hypothesis of arrival and dispersal of these snakes into South America earlier than previously expected. This fossil assemblage sheds light on the palaeoenvironments, and the geographical/temporal range of several aquatic/terrestrial lineages inhabiting the Amazonian region.


Author(s):  
K.M. Rajesh ◽  
Sujitha Thomas ◽  
Sandhya Sukumaran ◽  
G.B. Purushottama ◽  
G.D. Nataraja ◽  
...  

Background: The fishes of the family Carangidae forms one of the largest families of bony fishes, representing about 140 species, widely distributed in all tropical and temperate marine waters of the world. In recent past, fishes of this family are exhibiting new geographical distribution which could be attributed to climatic variability. Methods: The specimens were collected from multiday trawl boats operated along Karnataka coast. Morphometric and meristic characteristics together with genetic analysis using DNA bar coding was used to validate the identity of the specimen. Spatial distribution map of the species in Indian Ocean was generated using the information from the present study and available literature. Result: The morphometric and meristic characteristics of the specimens of greater amberjack, Seriola dumerili collected during the study were comparable with the previous investigations. The phylogenetic tree constructed using sequences of COI (MW974826 and MW974827) of the Seriola species showed distinct clustering among species with significant bootstrap values confirming the identity to the extent of 99% with the sequences of Seriola dumerili deposited in NCBI GenBank. This study confirms the first distributional record of Seriola dumerili from the eastern Arabian Sea.


2021 ◽  
Vol 8 (11) ◽  
Author(s):  
Richard P. Dearden ◽  
Sam Giles

The teeth of sharks famously form a series of transversely organized files with a conveyor-belt replacement that are borne directly on the jaw cartilages, in contrast to the dermal plate-borne dentition of bony fishes that undergoes site-specific replacement. A major obstacle in understanding how this system evolved is the poorly understood relationships of the earliest chondrichthyans and the profusion of morphologically and terminologically diverse bones, cartilages, splints and whorls that they possess. Here, we use tomographic methods to investigate mandibular structures in several early branching ‘acanthodian’-grade stem-chondrichthyans. We show that the dentigerous jaw bones of disparate genera of ischnacanthids are united by a common construction, being growing bones with non-shedding dentition. Mandibular splints, which support the ventro-lateral edge of the Meckel's cartilage in some taxa, are formed from dermal bone and may be an acanthodid synapomorphy. We demonstrate that the teeth of Acanthodopsis are borne directly on the mandibular cartilage and that this taxon is deeply nested within an edentulous radiation, representing an unexpected independent origin of teeth. Many or even all of the range of unusual oral structures may be apomorphic, but they should nonetheless be considered when building hypotheses of tooth and jaw evolution, both in chondrichthyans and more broadly.


2021 ◽  
Vol 9 (11) ◽  
pp. 1188
Author(s):  
Alberto Collareta ◽  
Olivier Lambert ◽  
Felix G. Marx ◽  
Christian de Muizon ◽  
Rafael Varas-Malca ◽  
...  

The northward-flowing Humboldt Current hosts perpetually high levels of productivity along the western coast of South America. Here, we aim to elucidate the deep-time history of this globally important ecosystem based on a detailed palaeoecological analysis of the exceptionally preserved middle–upper Miocene vertebrate assemblages of the Pisco Formation of the East Pisco Basin, southern Peru. We summarise observations on hundreds of fossil whales, dolphins, seals, seabirds, turtles, crocodiles, sharks, rays, and bony fishes to reconstruct ecological relationships in the wake of the Middle Miocene Climatic Optimum, and the marked cooling that followed it. The lowermost, middle Miocene Pisco sequence (P0) and its vertebrate assemblage testify to a warm, semi-enclosed, near-shore palaeoenvironment. During the first part of the Tortonian (P1), high productivity within a prominent upwelling system supported a diverse assemblage of mesopredators, at least some of which permanently resided in the Pisco embayment and used it as a nursery or breeding/calving area. Younger portions of the Pisco Formation (P2) reveal a more open setting, with wide-ranging species like rorquals increasingly dominating the vertebrate assemblage, but also local differences reflecting distance from the coast. Like today, these ancient precursors of the modern Humboldt Current Ecosystem were based on sardines, but notably differed from their present-day equivalent in being dominated by extremely large-bodied apex predators like Livyatan melvillei and Carcharocles megalodon.


Sign in / Sign up

Export Citation Format

Share Document