live embryo
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 8)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Itay Erlich ◽  
Assaf Ben-Meir ◽  
Iris Har-Vardi ◽  
James A Grifo ◽  
Assaf Zaritsky

Automated live embryo imaging has transformed in-vitro fertilization (IVF) into a data-intensive field. Unlike clinicians who rank embryos from the same IVF cycle cohort based on the embryos visual quality and determine how many embryos to transfer based on clinical factors, machine learning solutions usually combine these steps by optimizing for implantation prediction and using the same model for ranking the embryos within a cohort. Here we establish that this strategy can lead to sub-optimal selection of embryos. We reveal that despite enhancing implantation prediction, inclusion of clinical properties hampers ranking. Moreover, we find that ambiguous labels of failed implantations, due to either low quality embryos or poor clinical factors, confound both the optimal ranking and even implantation prediction. To overcome these limitations, we propose conceptual and practical steps to enhance machine-learning driven IVF solutions. These consist of separating the optimizing of implantation from ranking by focusing on visual properties for ranking, and reducing label ambiguity.


2021 ◽  
pp. mbc.E21-06-0324
Author(s):  
Mary Ann Collins ◽  
L. Alexis Coon ◽  
Riya Thomas ◽  
Torrey R. Mandigo ◽  
Elizabeth Wynn ◽  
...  

Nuclear movement is a fundamental process of eukaryotic cell biology. Skeletal muscle presents an intriguing model to study nuclear movement because its development requires the precise positioning of multiple nuclei within a single cytoplasm. Furthermore, there is a high correlation between aberrant nuclear positioning and poor muscle function. Although many genes that regulate nuclear movement have been identified, the mechanisms by which these genes act is not known. Using Drosophila melanogaster muscle development as a model system, and a combination of live-embryo microscopy and laser ablation of nuclei, we have found that clustered nuclei encompass at least two phenotypes that are caused by distinct mechanisms. Specifically, Ensconsin is necessary for productive force production to drive any movement of nuclei whereas Bocksbeutel and Klarsicht are necessary to form distinct populations of nuclei that move to different cellular locations. Mechanisitcally, Ensconsin regulates the number of growing microtubules that are used to move nuclei whereas Bocksbeutel and Klarsicht regulate interactions between nuclei. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]


2020 ◽  
Author(s):  
Pablo Bora ◽  
Lenka Gahurova ◽  
Tomáš Mašek ◽  
Andrea Hauserova ◽  
David Potěšil ◽  
...  

AbstractBackgroundp38-MAPKs are stress-activated kinases necessary for placental development and nutrient and oxygen transfer during murine post-implantation development. In preimplantation development, p38-MAPK activity is required for blastocyst formation. Additionally, we have previously reported its role in regulating specification of inner cell mass (ICM) towards primitive endoderm (PrE), although a comprehensive mechanistic understanding is currently limited. Adopting live embryo imaging, proteomic and transcriptomic approaches, we report experimental data that directly address this deficit.ResultsChemical inhibition of p38-MAPK activity during blastocyst maturation causes impaired blastocyst cavity expansion, most evident between the third and tenth hours post inhibition onset. We identify an overlapping minimal early blastocyst maturation window of p38-MAPKi inhibition (p38-MAPKi) sensitivity, that is sufficient to impair PrE cell fate by the late blastocyst (E4.5) stage. Comparative proteomic analyses reveal substantial downregulation of ribosomal proteins, the mRNA transcripts of which are also significantly upregulated. Ontological analysis of the differentially expressed transcriptome during this developmental period reveals “translation” related gene transcripts as being most significantly, yet transiently, affected by p38-MAPKi. Moreover, combined assays consistently report concomitant reductions in de novo translation that are associated with accumulation of unprocessed rRNA precursors. Using a phosphoproteomic approach, ± p38-MAPKi, we identified Mybpp1a, an rRNA transcription and processing regulator gene, as a potential p38-MAPK effector. We report that siRNA mediated clonal knockdown of Mybpp1a is associated with significantly diminished PrE contribution. Lastly, we show that defective PrE specification caused by p38-MAPKi (but not MEK/ERK signalling inhibition) can be partially rescued by activating the archetypal mTOR mediated translation regulatory pathway.ConclusionsActivated p38-MAPK controls blastocyst maturation in an early and distinctly transient developmental window by regulating gene functionalities related to translation, that creates a permissive environment for appropriate specification of ICM cell fate.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatiana Omelchenko ◽  
Alan Hall ◽  
Kathryn V. Anderson

AbstractCoordinated directional migration of cells in the mesoderm layer of the early embryo is essential for organization of the body plan. Here we show that mesoderm organization in mouse embryos depends on β-Pix (Arhgef7), a guanine nucleotide exchange factor for Rac1 and Cdc42. As early as E7.5, β-Pix mutants have an abnormally thick mesoderm layer; later, paraxial mesoderm fails to organize into somites. To define the mechanism of action of β-Pix in vivo, we optimize single-cell live-embryo imaging, cell tracking, and volumetric analysis of individual and groups of mesoderm cells. Use of these methods shows that wild-type cells move in the same direction as their neighbors, whereas adjacent β-Pix mutant cells move in random directions. Wild-type mesoderm cells have long polarized filopodia-like protrusions, which are absent in β-Pix mutants. The data indicate that β-Pix-dependent cellular protrusions drive and coordinate collective migration of the mesoderm in vivo.


2020 ◽  
Vol 114 (3) ◽  
pp. e97-e98
Author(s):  
Jacquelyn Shaw ◽  
Carlos M. Parra ◽  
Jennifer K. Blakemore ◽  
Mary Elizabeth Fino ◽  
Frederick L. Licciardi

2020 ◽  
Author(s):  
Mary Ann Collins ◽  
L. Alexis Coon ◽  
Riya Thomas ◽  
Torrey R. Mandigo ◽  
Elizabeth Wynn ◽  
...  

ABSTRACTNuclear movement is a fundamental process of eukaryotic cell biology. Skeletal muscle presents an intriguing model to study nuclear movement because its development requires the precise positioning of multiple nuclei within a single cytoplasm. Furthermore, there is a high correlation between aberrant nuclear positioning and poor muscle function. Although many genes that regulate nuclear movement have been identified, the mechanisms by which these genes act is not known. Using Drosophila melanogaster muscle development as a model system, and a combination of live-embryo microscopy and laser ablation of nuclei, we have found that phenotypically similar mutants are based in different molecular disruptions. Specifically, ensconsin (Drosophila MAP7) regulates the number of growing microtubules that are used to move nuclei whereas bocksbeutel (Drosophila emerin) and klarsicht (Drosophila KASH-protein regulate interactions between nuclei.


Author(s):  
Firoozeh Ahmadi ◽  
Fattaneh Pahlavan ◽  
Fariba Ramezanali ◽  
Farnaz Akhbari

Background: Interstitial Ectopic Pregnancy (IEP) is an uncommon type of ectopic pregnancy with the risk of rupturing and bleeding. The incidence of IEP is about 2-4% of all EPs. The diagnosis and management are challenging. We present a well-timed and managed case of IEP. Case: The case was a 37-yr-old woman presented at the Royan Institute with a chief complain of sudden onset of pelvic pain and moderate vaginal bleeding, three weeks after her positive pregnancy test. She had got pregnant with in-vitro fertilization procedure. She was admitted for a two-dimensional ultrasound (2DUS). The 2DUS findings showed a gestational sac with live embryo and yolk sac which was located high in the fundus and eccentric to the endometrium. The suspicion of IEP rose after the 2DUS findings, the confirmation of further diagnosis was then done by three-dimensional ultrasound, and the treatment was done by laparoscopy. The patient underwent laparoscopic left corneal resection. She was discharged after two days and her β-hCG achieved complete resolution (< 5 mIU/mL) after two weeks’ follow-up. Conclusion: According to the life-threatening complications that are associated with IEP, acquaintance and suspicion about IEP is important. Specified information that obtained by three-dimensional ultrasound could be useful for exact locating and detection. Key words: Pregnancy, Ectopic, Diagnostic, Ultrasound, Laparoscopic assisted surgery.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4843 ◽  
Author(s):  
Akkachai Phuphanin ◽  
Lawan Sampanporn ◽  
Boonsong Sutapun

Heart rate (HR) is an important parameter in the study of the developmental physiology of chicken embryos and a crucial indicator of dead or live embryo grading in artificial incubation processes. A non-invasive HR measurement technique is required for long-term and routine HR assessment with minimal influence on embryo development. Accordingly, in this study, a non-invasive HR measurement technique of chicken embryos using a smartphone is demonstrated. The detection method of the proposed device is based on the photoplethysmography principle in which a smartphone camera is used for video recording, and the chicken embryonic HR is obtained from the recorded video images using a custom Android application. We used a smartphone to measure the embryonic HR of 60 native chicken eggs and found that it can measure the chicken embryonic HR from day 4 to day 20. The proposed smartphone HR device will be beneficial for scientific research and industrial applications. With internet connectivity, users can utilize their smartphone to measure the HR, display, share, and store the results.


CYTOLOGIA ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. 221-222 ◽  
Author(s):  
Tomomi Watanabe-Asaka ◽  
Shoji Oda ◽  
Hiroshi Mitani

Sign in / Sign up

Export Citation Format

Share Document