dispersed catalysts
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 35)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Selin Bac ◽  
Shaama Mallikarjun Sharada

This work examines the mechanisms of low-temperature CO oxidation with atomically dispersed Pt on rutile TiO2 (110) using density functional theory and the energetic span model (ESM). Of the 13 distinct pathways spanning Eley-Rideal (ER), termolecular ER (TER), Langmuir-Hinshelwood(LH), Mars-Van Krevelen (MvK) mechanisms as well as their combinations, TER with CO-assisted CO2 desorption yields the highest turnover frequency (TOF). However, this pathway is ruled out because Pt is dynamically unstable in an intermediate state in the TER cycle, determined in a prior ab initio molecular dynamics study by our group. We instead find that a previously neglected pathway – the ER mechanism – is the most plausible CO oxidation route based on agreement with experimental TOFs and turnover-determining states. The preferred mechanism is sensitive to temperature, with LH becoming more favorable than ER and TER above 750 K. By comparing TOFs for Pt1/TiO2 with prior mechanistic studies of various oxide-supported atomically dispersed catalysts in the literature, we also attempt to identify the most viable metal and support materials for CO oxidation.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhangsen Chen ◽  
Gaixia Zhang ◽  
Yuren Wen ◽  
Ning Chen ◽  
Weifeng Chen ◽  
...  

AbstractThe electroreduction reaction of CO2 (ECO2RR) requires high-performance catalysts to convert CO2 into useful chemicals. Transition metal-based atomically dispersed catalysts are promising for the high selectivity and activity in ECO2RR. This work presents a series of atomically dispersed Co, Fe bimetallic catalysts by carbonizing the Fe-introduced Co-zeolitic-imidazolate-framework (C–Fe–Co–ZIF) for the syngas generation from ECO2RR. The synergistic effect of the bimetallic catalyst promotes CO production. Compared to the pure C–Co–ZIF, C–Fe–Co–ZIF facilitates CO production with a CO Faradaic efficiency (FE) boost of 10%, with optimal FECO of 51.9%, FEH2 of 42.4% at − 0.55 V, and CO current density of 8.0 mA cm−2 at − 0.7 V versus reversible hydrogen electrode (RHE). The H2/CO ratio is tunable from 0.8 to 4.2 in a wide potential window of − 0.35 to − 0.8 V versus RHE. The total FECO+H2 maintains as high as 93% over 10 h. The proper adding amount of Fe could increase the number of active sites and create mild distortions for the nanoscopic environments of Co and Fe, which is essential for the enhancement of the CO production in ECO2RR. The positive impacts of Cu–Co and Ni–Co bimetallic catalysts demonstrate the versatility and potential application of the bimetallic strategy for ECO2RR.


2021 ◽  
Author(s):  
Selin Bac ◽  
Shaama Mallikarjun Sharada

This work examines mechanisms of low-temperature CO oxidation over a single binding site of atomically dispersed Pt on rutile TiO2 (110) using density functional theory and the energetic span model (ESM). Of the 12 distinct pathways spanning Eley- Rideal (ER), termolecular ER (TER), Langmuir-Hinshelwood (LH), Mars-Van Krevelen (MvK) mechanisms as well as their combinations, TER with CO-assisted CO2 desorption yields the highest turnover frequency (TOF). However, this pathway is ruled out because Pt is dynamically unstable in an intermediate state in the TER cycle, determined in a prior ab initio molecular dynamics study by our group. We instead find, depending on reaction conditions, that either H1 is rendered inactive upon CO adsorption or the ER mechanism is preferred if O2 dissociatively adsorbs. ER exhibits the second highest TOF and the TOF-determining state is in qualitative agreement with experiment. TOFs for all MvK pathways are several orders of magnitude lower than ER and LH. By comparing TOFs for Pt1/TiO2 with prior mechanistic studies of various oxide-supported atomically dispersed catalysts in the literature, we identify the most active metal and support materials for low-temperature CO oxidation.


Fuel ◽  
2021 ◽  
pp. 122664
Author(s):  
Zhenping Cai ◽  
Yongde Ma ◽  
Jiayin Zhang ◽  
Wenquan Wu ◽  
Yanning Cao ◽  
...  

2021 ◽  
Vol 61 (10) ◽  
pp. 1131-1137
Author(s):  
I. G. Baigildin ◽  
E. A. Karakhanov ◽  
A. L. Maximov ◽  
A. V. Vutolkina

Abstract The feasibility of biphenyl hydrogenation with syngas for hydrogen purification and binding with the aim of its transportation was demonstrated. Specific features of the hydrogenation of biphenyl as a promising organic hydrogen carrier using unsupported Ni–Mo sulfide catalysts were studied. In particular, the influence of temperature, reaction time, presence of water in the system, and Н2/СО gas mixture composition on the substrate conversion and selectivity with respect to products was examined. The highest conversion and the maximal hydrogen uptake are reached at 380°С in 6–8 h. The dispersed catalysts are active in biphenyl hydrogenation at the CO concentration in the Н2/СО gas mixture of up to 50 vol %, and H2O can act in this case as an in situ hydrogen source owing to the occurrence of the water-gas shift reaction.


2021 ◽  
pp. 110080
Author(s):  
Xiangbin Cai ◽  
Xiaowen Chen ◽  
Zhehan Ying ◽  
Shi Wang ◽  
Yong Chen ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document