blast furnace production
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 16)

H-INDEX

4
(FIVE YEARS 1)

2020 ◽  
Vol 2020 (4) ◽  
pp. 58-62
Author(s):  
G.O. Kuts ◽  
◽  
O.I. Teslenko ◽  

The question of methodical approach to the distribution of total technological energy consumption between separate kinds of outputs of multi-product manufacture is considered. Such ferrous metallurgy industries include blast furnace process, oxygen, energy, and coke production. The theoretical basis of proposed methodological provisions is Hess's law on thermochemical reactions and its consequences. For manufactures where the products correspond to the types of energy resources and have calorific value, the distribution of energy consumption is carried out according to the weighty volumes of types of products and their heat of combustion (for example, coke production). For industries that have multi-product manufacture of non-combustible products, the distribution of energy consumption between products is based on the weighty volumes of products and their heat capacity (for example, blast furnace iron production). In accordance with the proposed methodological provisions, we present calculation formulas for determining the distribution of total technological energy consumption for separate types of coke and blast furnace production. The results calculations of energy consumption are presented separately for coke, coke-oven gas, and chemical products of coke manufacture as well as for cast iron and furnace slag for blast furnace production. Calculations show a significant reduction of the energy consumption of coke, with regard for the distribution of energy consumption for individual outputs of coke production (by 27.2%) and pig iron in blast furnace production (a decrease in 31.8%.). The proposed methodological provisions for the distribution of total technological energy consumption between separate types of outputs of multi-product industries can be used in such manufactures of oil refining and chemical industry, in the processing industry, in particular, in the production of dairy products, etc. Keywords: energy consumption, multi-product manufacture, coke, coke-oven gas, cast iron, slag, heat of combustion


2020 ◽  
Vol 118 (1) ◽  
pp. 106
Author(s):  
Lei Zhang ◽  
Jianliang Zhang ◽  
Kexin Jiao ◽  
Guoli Jia ◽  
Jian Gong ◽  
...  

The three-dimensional (3D) model of erosion state of blast furnace (BF) hearth was obtained by using 3D laser scanning method. The thickness of refractory lining can be measured anywhere and the erosion curves were extracted both in the circumferential and height directions to analyze the erosion characteristics. The results show that the most eroded positions located below 20# tuyere with an elevation of 7700 mm and below 24#–25# tuyere with an elevation of 8100 mm, the residual thickness here is only 295 mm. In the circumferential directions, the serious eroded areas located between every two tapholes while the taphole areas were protected well by the bonding material. In the height directions, the severe erosion areas located between the elevation of 7600 mm to 8200 mm. According to the calculation, the minimum depth to ensure the deadman floats in the hearth is 2581 mm, corresponding to the elevation of 7619 mm. It can be considered that during the blast furnace production process, the deadman has been sinking to the bottom of BF hearth and the erosion areas gradually formed at the root of deadman.


Sign in / Sign up

Export Citation Format

Share Document