glutamatergic neurons
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 199)

H-INDEX

48
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Joanna L Spencer-Segal ◽  
Swapnil Gavade ◽  
Qiang Wei ◽  
Colin Johnston ◽  
Savannah Kounelis ◽  
...  

Stress hormone signaling via the glucocorticoid receptor (GR) modulates vulnerability to stress-related disorders, but whether GR influences how the brain encodes contextual experience is unknown. Mice with lifelong GR overexpression in forebrain glutamatergic neurons (GRov) show increased sensitivity to environmental stimuli. This phenotype is developmentally programmed and associated with profound changes in hippocampal gene expression. We hypothesized that GR overexpression influences hippocampal encoding of experiences. To test our hypothesis, we performed in vivo microendoscopic calcium imaging of 1359 dorsal CA1 pyramidal cells in freely behaving male and female WT and GRov mice during exploration of a novel open field. We compared calcium amplitude and event rate as well as sensitivity to center location and mobility between genotypes. GRov neurons exhibited higher average calcium activity than WT neurons in the novel open field. While most neurons showed sensitivity to center location and/or mobility, GRov neurons were more likely to be sensitive to center location and less likely to be sensitive to mobility, as compared to WT neurons. More than one-third of behavior-selective GRov neurons were uniquely sensitive to location without mobility sensitivity; these uniquely center-sensitive neurons were rare in WT. We conclude that dorsal CA1 pyramidal cells in GRov mice show increased activity in a novel environment and preferentially encode emotionally salient behavior. This heightened sensitivity to a novel environment and preferential encoding of emotionally salient elements of experience could underlie differential stress vulnerability in humans with increased glucocorticoid sensitivity.


Author(s):  
Hironori Bando ◽  
Yasuhiro Fukuda ◽  
Nina Watanabe ◽  
Jeje Temitope Olawale ◽  
Kentaro Kato

Toxoplasma gondii chronically infects the brain as latent cysts containing bradyzoites and causes various effects in the host. Recently, the molecular mechanisms of cyst formation in the mouse brain have been elucidated, but those in the human brain remain largely unknown. Here, we show that abnormal glutamine metabolism caused by both interferon-γ (IFN-γ) stimulation and T. gondii infection induce cyst formation in human neuroblastoma cells regardless of the anti-T. gondii host factor nitric oxide (NO) level or Indoleamine 2,3-dioxygenase-1 (IDO1) expression. IFN-γ stimulation promoted intracellular glutamine degradation in human neuronal cells. Additionally, T. gondii infection inhibited the mRNA expression of the host glutamine transporters SLC38A1 and SLC38A2. These dual effects led to glutamine starvation and triggered T. gondii stage conversion in human neuronal cells. Furthermore, these mechanisms are conserved in human iPSC-derived glutamatergic neurons. Taken together, our data suggest that glutamine starvation in host cells is an important trigger of T. gondii stage conversion in human neurons.


2022 ◽  
Author(s):  
Anna Kirjavainen ◽  
Parul Singh ◽  
Laura Lahti ◽  
Patricia Seja ◽  
Zoltan Lelkes ◽  
...  

The midbrain reticular formation is a mosaic of diverse GABAergic and glutamatergic neurons that have been associated with a variety of functions, including the regulation of sleep. However the molecular characteristics and development of the midbrain reticular formation neurons are poorly understood. As the transcription factor Gata2 is required for the development of all GABAergic neurons derived from the embryonic mouse midbrain, we hypothesized that the genes expressed downstream of Gata2 could contribute to the diversification of GABAergic neuron subtypes in this brain region. Here, we show that Gata2 is indeed required for the expression of several lineage-specific transcription factors in post-mitotic midbrain GABAergic neuron precursors. These include a homeodomain transcription factor Nkx2-2 and a SKI family transcriptional repressor Skor2, which are co-expressed in a restricted group of GABAergic precursors in the midbrain reticular formation. Both Gata2, and Nkx2-2 function is required for the expression of Skor2 in GABAergic precursors. In the adult mouse as well as rat midbrain, the Nkx2-2 and Skor2 expressing GABAergic neurons locate at the boundary of the ventrolateral periaqueductal gray and the midbrain reticular formation, an area shown to contain REM-off neurons regulating REM sleep. In addition to the characteristic localization, the Skor2 positive cells increase their activity upon REM sleep inhibition, send projections to a pontine region associated with sleep control and are responsive to orexins, consistent with the known properties of the midbrain REM-off neurons.


Author(s):  
Sarah J Certel ◽  
Evelyne Ruchti ◽  
Brian D McCabe ◽  
R Steven Stowers

Abstract Glutamate is a principal neurotransmitter used extensively by the nervous systems of all vertebrate and invertebrate animals. It is primarily an excitatory neurotransmitter that has been implicated in nervous system development as well as a myriad of brain functions from the simple transmission of information between neurons to more complex aspects of nervous system function including synaptic plasticity, learning, and memory. Identification of glutamatergic neurons and their sites of glutamate release are thus essential for understanding the mechanisms of neural circuit function and how information is processed to generate behavior. Here we describe and characterize smFLAG-vGlut, a conditional marker of glutamatergic synaptic vesicles for the Drosophila model system. smFLAG-vGlut is validated for functionality, conditional expression, and specificity for glutamatergic neurons and synaptic vesicles. The utility of smFLAG-vGlut is demonstrated by glutamatergic neurotransmitter phenotyping of 26 different central complex neuron types of which nine were established to be glutamatergic. This illumination of glutamate neurotransmitter usage will enhance the modeling of central complex neural circuitry and thereby our understanding of information processing by this region of the fly brain. The use of smFLAG for glutamatergic neurotransmitter phenotyping and identification of glutamate release sites can be extended to any Drosophila neuron(s) represented by a binary transcription system driver.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sile An ◽  
Xiangning Li ◽  
Lei Deng ◽  
Peilin Zhao ◽  
Zhangheng Ding ◽  
...  

The glutamatergic and GABAergic neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) mediated diverse brain functions. However, their whole-brain neural connectivity has not been comprehensively mapped. Here we used the virus tracers to characterize the whole-brain inputs and outputs of glutamatergic and GABAergic neurons in VTA and SNc. We found that these neurons received similar inputs from upstream brain regions, but some quantitative differences were also observed. Neocortex and dorsal striatum provided a greater share of input to VTA glutamatergic neurons. Periaqueductal gray and lateral hypothalamic area preferentially innervated VTA GABAergic neurons. Specifically, superior colliculus provided the largest input to SNc glutamatergic neurons. Compared to input patterns, the output patterns of glutamatergic and GABAergic neurons in the VTA and SNc showed significant preference to different brain regions. Our results laid the anatomical foundation for understanding the functions of cell-type-specific neurons in VTA and SNc.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dae Hee Han ◽  
Ilgang Hong ◽  
Ja Eun Choi ◽  
Pojeong Park ◽  
Jun-Yeong Baek ◽  
...  

AbstractKetamine, a non-competitive antagonist of the N-methyl-d-aspartate receptor (NMDAR), generates a rapidly-acting antidepressant effect. It exerts psychomimetic effects, yet demands a further investigation of its mechanism. Previous research showed that ketamine did no longer promote hyperlocomotion in GluN2D knockout (KO) mice, which is a subunit of NMDAR. In the present study, we tested whether GluN2D-containing NMDARs participate in the physiological changes in the medial prefrontal cortex (mPFC) triggered by ketamine. Sub-anesthetic dose of ketamine (25 mg/kg) elevated the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in wild-type (WT) mice, but not in GluN2D KO mice, 1 h after the injection. The amplitude of sEPSC and paired-pulse ratio (PPR) were unaltered by ketamine in both WT and GluN2D KO mice. These findings suggest that GluN2D-containing NMDARs might play a role in the ketamine-mediated changes in glutamatergic neurons in mPFC and, presumably, in ketamine-induced hyperlocomotion.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1309
Author(s):  
Valery Petrovich Zinchenko ◽  
Artem Mikhailovich Kosenkov ◽  
Sergei Gennadevich Gaidin ◽  
Alexander Igorevich Sergeev ◽  
Ludmila Petrovna Dolgacheva ◽  
...  

Calcium-permeable kainate and AMPA receptors (CP-KARs and CP-AMPARs), as well as NMDARs, play a pivotal role in plasticity and in regulating neurotransmitter release. Here we visualized in the mature hippocampal neuroglial cultures the neurons expressing CP-AMPARs and CP-KARs. These neurons were visualized by a characteristic fast sustained [Ca2+]i increase in response to the agonist of these receptors, domoic acid (DoA), and a selective agonist of GluK1-containing KARs, ATPA. Neurons from both subpopulations are GABAergic. The subpopulation of neurons expressing CP-AMPARs includes a larger percentage of calbindin-positive neurons (39.4 ± 6.0%) than the subpopulation of neurons expressing CP-KARs (14.2 ± 7.5% of CB+ neurons). In addition, we have shown for the first time that NH4Cl-induced depolarization faster induces an [Ca2+]i elevation in GABAergic neurons expressing CP-KARs and CP-AMPARs than in most glutamatergic neurons. CP-AMPARs antagonist, NASPM, increased the amplitude of the DoA-induced Ca2+ response in GABAergic neurons expressing CP-KARs, indicating that neurons expressing CP-AMPARs innervate GABAergic neurons expressing CP-KARs. We assume that CP-KARs in inhibitory neurons are involved in the mechanism of outstripping GABA release upon hyperexcitation.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Songjun Wang ◽  
Xia Liu ◽  
Weibo Shi ◽  
Qian Qi ◽  
Guozhong Zhang ◽  
...  

Stress is a ubiquitous part of our life, while appropriate stress levels can help improve the body’s adaptability to the environment. However, sustained and excessive levels of stress can lead to the occurrence of multiple devastating diseases. As an emotional center, the amygdala plays a key role in the regulation of stress-induced psycho-behavioral disorders. The structural changes in the amygdala have been shown to affect its functional characteristics. The amygdala-related neurotransmitter imbalance is closely related to psychobehavioral abnormalities. However, the mechanism of structural and functional changes of glutamatergic neurons in the amygdala induced by stress has not been fully elucidated. Here, we identified that chronic stress could lead to the degeneration and death of glutamatergic neurons in the lateral amygdaloid nucleus, resulting in neuroendocrine and psychobehavioral disorders. Therefore, our studies further suggest that the Protein Kinase R-like ER Kinase (PERK) pathway may be therapeutically targeted as one of the key mechanisms of stress-induced glutamatergic neuronal degeneration and death in the amygdala.


Sign in / Sign up

Export Citation Format

Share Document