modeling systems
Recently Published Documents


TOTAL DOCUMENTS

486
(FIVE YEARS 126)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 73 ◽  
pp. 277-327
Author(s):  
Samer Nashed ◽  
Shlomo Zilberstein

Opponent modeling is the ability to use prior knowledge and observations in order to predict the behavior of an opponent. This survey presents a comprehensive overview of existing opponent modeling techniques for adversarial domains, many of which must address stochastic, continuous, or concurrent actions, and sparse, partially observable payoff structures. We discuss all the components of opponent modeling systems, including feature extraction, learning algorithms, and strategy abstractions. These discussions lead us to propose a new form of analysis for describing and predicting the evolution of game states over time. We then introduce a new framework that facilitates method comparison, analyze a representative selection of techniques using the proposed framework, and highlight common trends among recently proposed methods. Finally, we list several open problems and discuss future research directions inspired by AI research on opponent modeling and related research in other disciplines.


2022 ◽  
pp. 51-59
Author(s):  
SVITLANA BOBROVA ◽  
OKSANA DMYTRYK ◽  
LIUDMYLA HALAVSKA ◽  
TETIANA YELINA

Purpose. To investigate the influence of the number of threads resisting to break, the griping length, and the change in the position of the interlacing point when threading with a loop the breaking characteristics of complex polyethylene threads in the form of a loop.Methodology. In the course of the research, experimental research methods were used to determine the breaking characteristics of high molecular weight polyethylene threads on a WDW-5ES tensile machine in accordance with DSTU ISO 2062: 2004, the main provisions of textile materials science and knitting theory, methods of analysis and synthesis of the results obtained. Results. Based on the results of the studies, the influence of different factors on the breaking characteristics of complex multifilament threads was determined, namely: the influence of the number of threads resting on the break, the griping length and the change in the position of the weave point when threading with a loop. In the course of research, the griping length was changed in the range from 25mm to 300mm, and with a stable griping length (100 mm), the location of the thread weave point relative to the lower grip (25mm, 50mm, 75mm) was changed. It has been found that the breaking characteristics of a complex polyethylene yarn are influenced by both the griping length and the location of the weave point in the case of a loop-shaped break. The magnitude of the specific breaking force in the study of loop-shaped rupture is greater than in the study of straight segments of the thread. This is due to parallelization and compaction of the filaments due to the presence of the weave point on the thread that resists tearing. Scientific novelty. Regularities of the effect of griping length, linear density, and location of the point of weave of the complex high molecular threads in relation to the downer and upper grip are established provided that the griping length (100 mm) remains unchanged on the value of breaking load and elongation.Practical significance. Determination of the factors affecting the breaking characteristics of a complex polyethylene yarn will allow in the future, at the stage of designing the structure of knitwear in computer 3D modeling systems, to provide for the magnitude of the breaking force.


2021 ◽  
Vol 1 (2) ◽  
pp. 49-57
Author(s):  
Mehran Amini ◽  
Miklos F. Hatwagner ◽  
Gergely Cs. Mikulai ◽  
Laszlo T. Koczy

The process of traffic control systems significantly relies on the immediate detection of breakdown states. As a result of their crisp (non-fuzzy) based calculation procedures, conventional traffic estimators and predictors cannot effectively model traffic states. In fact, these methods are characterized by exact features, while traffic is defined by uncertain variables with vague properties. Furthermore, typical numerical methodologies have constraints on evaluating the overall system status in heterogeneous and convoluted networks mainly due to the absence of reliable and real-time data. This study develops a fuzzy inference system that uses data from the Hungarian freeway networks for predicting the severity of congestion in this complex network. Congestion severity is considered the output variable, and traffic flow along with the length and the number of lanes of each section are assigned as input variables. Seventy-five fuzzy production rules were generated using accessible datasets, percentile distribution, and experts' consensus. The MATLAB fuzzy logic toolbox simulates the designed model and analysis steps. According to available resources, the results demonstrate linkages among input variables. Analyses are also used to construct intelligent traffic modeling systems and further service-related planning.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 66
Author(s):  
Spyridon A. Koutroufinis

Mathematical models applied in contemporary theoretical and systems biology are based on some implicit ontological assumptions about the nature of organisms. This article aims to show that real organisms reveal a logic of internal causality transcending the tacit logic of biological modeling. Systems biology has focused on models consisting of static systems of differential equations operating with fixed control parameters that are measured or fitted to experimental data. However, the structure of real organisms is a highly dynamic process, the internal causality of which can only be captured by continuously changing systems of equations. In addition, in real physiological settings kinetic parameters can vary by orders of magnitude, i.e., organisms vary the value of internal quantities that in models are represented by fixed control parameters. Both the plasticity of organisms and the state dependence of kinetic parameters adds indeterminacy to the picture and asks for a new statistical perspective. This requirement could be met by the arising Biological Statistical Mechanics project, which promises to do more justice to the nature of real organisms than contemporary modeling. This article concludes that Biological Statistical Mechanics allows for a wider range of organismic ontologies than does the tacitly followed ontology of contemporary theoretical and systems biology, which are implicitly and explicitly based on systems theory.


2021 ◽  
Vol 12 (5-2021) ◽  
pp. 57-66
Author(s):  
Dzavdet Sh. Suleimanov ◽  
◽  
Alexander Ya. Fridman ◽  
Rinat A. Gilmullin ◽  
Boris A. Kulik ◽  
...  

System analysis of the problem of modeling a natural language (NL) made it possible to formulate the root cause of the low efficiency of modern means for accumulating and processing knowledge in such languages. This is the complexity of intellectualization for such tools, which are created on the basis of primitive artificial programming languages that practically represent a subset of flectional analytical languages or artificial constructions based on them. To reduce the severity of the identified problem, it is proposed to build NL modeling systems on the basis of technological tools for verbalization and recognition of sense. These tools consist of semiotic models of NL lexical and grammatical means. This approach seems to be especially promising for agglutinative languages; it is supposed to be implemented on the example of the Tatar language.


Author(s):  
Оleg Shcherbak ◽  
Andrey Suminov ◽  
Sergey Khachaturian

The method of designing frames of special machines for road construction and public utilities is considered, which allows you to design special machines with a given level of reliability and durability. The technique allows using modern computer modeling systems to carry out constructive refinement of the base tractor frame using experimental and mathematical modeling data. Using the design feature of tractors of the T–150K family, namely the presence of an articulated joint, it is possible, using a modular principle, to quickly design various machines for various industries. However, in order to design reliable machines, one must have a methodology for designing such machines. There is currently no such technique. When designing special machines, designers perform calculations only for working equipment. But as practice shows, the critical elements of the machine in this case, the support of the vertical hinge of the tractor frame during the operation of the pressurized machine (wheeled bulldozer and front loader), experience shock loads that lead to the destruction of the frame of the base tractor. The purpose of the article is to develop a methodology for designing a complex of road–building machines on the basis of mass–produced tractors with an articulated frame produced by public limited company "KhTZ".


2021 ◽  
Vol 21 (23) ◽  
pp. 17577-17605
Author(s):  
John P. McCormack ◽  
V. Lynn Harvey ◽  
Cora E. Randall ◽  
Nicholas Pedatella ◽  
Dai Koshin ◽  
...  

Abstract. Detailed meteorological analyses based on observations extending through the middle atmosphere (∼ 15 to 100 km altitude) can provide key information to whole atmosphere modeling systems regarding the physical mechanisms linking day-to-day changes in ionospheric electron density to meteorological variability near the Earth's surface. However, the extent to which independent middle atmosphere analyses differ in their representation of wave-induced coupling to the ionosphere is unclear. To begin to address this issue, we present the first intercomparison among four such analyses, JAGUAR-DAS, MERRA-2, NAVGEM-HA, and WACCMX+DART, focusing on the Northern Hemisphere (NH) 2009–2010 winter, which includes a major sudden stratospheric warming (SSW). This intercomparison examines the altitude, latitude, and time dependences of zonal mean zonal winds and temperatures among these four analyses over the 1 December 2009 to 31 March 2010 period, as well as latitude and altitude dependences of monthly mean amplitudes of the diurnal and semidiurnal migrating solar tides, the eastward-propagating diurnal zonal wave number 3 nonmigrating tide, and traveling planetary waves associated with the quasi-5 d and quasi-2 d Rossby modes. Our results show generally good agreement among the four analyses up to the stratopause (∼ 50 km altitude). Large discrepancies begin to emerge in the mesosphere and lower thermosphere owing to (1) differences in the types of satellite data assimilated by each system and (2) differences in the details of the global atmospheric models used by each analysis system. The results of this intercomparison provide initial estimates of uncertainty in analyses commonly used to constrain middle atmospheric meteorological variability in whole atmosphere model simulations.


2021 ◽  
Author(s):  
Gregor Pfalz ◽  
Bernhard Diekmann ◽  
Johann-Christoph Freytag ◽  
Liudmila Sryrkh ◽  
Dmitry A. Subetto ◽  
...  

Abstract. Age-depth correlations are the key elements in paleoenvironmental studies to place proxy measurements into a temporal context. However, potential influencing factors of the available radiocarbon data and the associated modeling process can cause serious divergences of age-depth correlations from true chronologies, which is particularly challenging for paleolimnological studies in Arctic regions. This paper provides geoscientists with a tool-assisted approach to compare outputs from age-depth modeling systems and to strengthen the robustness of age-depth correlations. We primarily focused in the development on age determination data from a data collection of high latitude lake systems (50° N to 90° N, 62 sediment cores, and a total of 661 dating points). Our approach used five age-depth modeling systems (Bacon, Bchron, clam, hamstr, Undatable) that we linked through a multi-language Jupyter Notebook called LANDO (“Linked age and depth modeling”). Within LANDO we have implemented a pipeline from data integration to model comparison to allow users to investigate the outputs of the modeling systems. In this paper, we focused on highlighting three different case studies: comparing multiple modeling systems for one sediment core with a continuous, undisturbed succession of dating points (CS1 - “Undisturbed sequence”), for one sediment core with scattered dating points (CS2 - “Inconsistent sequence”), and for multiple sediment cores (CS3 - “Multiple cores”). For the first case study (CS1), we showed how we facilitate the output data from all modeling systems to create an ensemble age-depth model. In the special case of scattered dating points (CS2), we introduced an adapted method that uses independent proxy data to assess the performance of each modeling system in representing lithological changes. Based on this evaluation, we reproduced the characteristics of an existing age-depth model (Lake Ilirney, EN18208) without removing age determination data. For the multiple sediment core (CS3) we found that when considering the Pleistocene-Holocene transition, the main regime changes in sedimentation rates do not occur synchronously for all lakes. We linked this behavior to the uncertainty within the modeling process as well as the local variability of the sediment cores within the collection.


2021 ◽  
Author(s):  
Asep Muhammad Indra Purnama ◽  
◽  
Moch Yasin Alamsyah ◽  

In today's information era, the ability to do business or carry out activities is reliant on the availability of information technology is needed in most of the business sector. Along with the expansion of information technology, however, it frequently introduces new problems such as data redundancy, technological platforms, and excessive information technology spending. To avoid the problem that frequently happens, organizations require IS planning that may create alignment between IT and the business. Enterprise Architecture Planning (EAP) is a Zachman Framework-based Enterprise architecture methodology. The first stage is Planning Initialization, which aims to design information technology for the future utilizing the Enterprise Architecture Planning (EAP) process (starting), second, we'll look at business modeling, systems, and present technology (where we are now) , third, data architecture, applications, and technology (recommendations), and fourth, implementation (Achievements). The existence of a recommendation or blueprint given to the Sindangjaya Ward Office is expected to solve in the resolution of problems at the ward office, and it is hoped that the method used can be applied and understood when the need for future development, particularly in the IT field.


Sign in / Sign up

Export Citation Format

Share Document