diffusion metallization
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 13)

H-INDEX

1
(FIVE YEARS 1)

2022 ◽  
Author(s):  
A. Veselovsky

Abstract. The article presents the calculations of diffusion indices of saturation of high-strength cast iron VCh 60 from powder filling. Carbide-forming elements were used as diffusers: vanadium, chromium and manganese. As a result of the research, empirical equations have been established for predicting the thickness of strengthening diffusion coatings depending on the temperature and saturation time.


Author(s):  
N. I. Kitaev ◽  
Yu. V. Yakimovich ◽  
M. Yu. Shigaev ◽  
S. Ya. Pichkhidze

To increase the service life of the gear teeth made of steel 20, operating under high shock loads, their main surfaces were subjected to high-temperature diffusion metallization, namely, chromium plating with high-frequency currents. As a result of diffusion metallization, the surface hardness increased 5.1–5.4 times – from 156–159 HV to 800–866 HV, and the strength level 3.3 times – from 250 to 820 mAh. Optimal parameters for the diffusion metallization: current I = 0.25–0.3 kA, power Pe = 8–10 kW, hardening τ = 8–10 min. By the method of scanning electron microscopy, it was found that after diffusion saturation of the surface of the gear teeth with chromium, the steel has a homogeneous structure with clearly pronounced transition layers, the average thickness of the diffusion layer was 0.06 mm. Energy dispersive analysis showed that after diffusion metallization with chromium powder, the basic composition of the steel remained constant, only the qualitative ratio of the components changed. X-ray phase analysis revealed the presence of an αFe-phase with the incorporation of Cr on the surface of the sample.


2021 ◽  
Vol 316 ◽  
pp. 851-856
Author(s):  
Aleksandr G. Sokolov ◽  
Eduard E. Bobylev ◽  
Ivan D. Storozhenko

The technology of diffusion saturation of austenitic steels by chromium and nickel in the medium of low-melting liquid metal melts is shown. The saturation temperature was up to 1050°C, and the duration was up to 8 hours. It was found that it is the most effective to apply coatings according to the technological scheme: pre-carburization-diffusion metallization – final carburization. It was found that the coating consists of 4 layers. The surface layer has a thickness of up to 5 mkm and a microtuberance of up to 19500 MPa. The second layer, up to 12 mkm thick, has a microhardness of up to 7500 MPa. The third, up to 50 mkm thick, has a microhardness of 2300 MPa. In the fourth layer, up to 150 mkm thick, the microhardness gradually decreases from 2300 MPa to the microhardness of the base. At the same time, the total thickness of the coatings is up to 200 mkm.


2020 ◽  
Vol 11 (6) ◽  
pp. 1348-1358
Author(s):  
P. P. Sharin ◽  
M. P. Akimova ◽  
S. P. Yakovleva ◽  
L. A. Nikiforov ◽  
V. I. Popov

2020 ◽  
Vol 992 ◽  
pp. 670-675
Author(s):  
P.P. Sharin ◽  
M.P. Akimova ◽  
S.P. Yakovleva

Structural-phase state of the diamond-metallized coating interphase boundary after thermal diffusion metallization of diamond grains by transition metals Cr, Ti were studied. Metallization were conducted under temperature-time mode corresponding to the sintering of cemented carbide matrices with Cu impregnation. The structural-phase state of the metallized coating and diamond-coating interphase boundary was studied by scanning electron microscopy, X-ray phase analysis and Raman spectroscopy. It was found that a thin continuous metal carbide coating chemically bonded to the diamond and consisting of the corresponding metal, their carbides and small amount of graphite phases is formed during thermal diffusion metallization of diamond by Cr and Ti under the conditions specified in the experiment. It was shown that graphite is formed not by a continuous layer, but in the form of local inclusions. This ensures a strong adhesion of the metallized coating to the diamond through the carbides of the corresponding metals. The results can be useful in the development of compositions and technological methods that provide an increased level of diamond retention in the matrices of tools based on cemented carbide powder mixtures.


2020 ◽  
Vol 992 ◽  
pp. 676-682
Author(s):  
P.P. Sharin ◽  
M.P. Akimova ◽  
S.P. Yakovleva

Structural-phase state of the diamond-metallized coating interphase boundary after thermal diffusion metallization of diamond grains by transition metals Fe, Ni and Co were studied. Metallization were conducted under temperature-time mode corresponding to the sintering of cemented carbide matrices with Cu impregnation. The structural-phase state of the metallized coating and diamond-coating interphase boundary was studied by scanning electron microscopy, X-ray phase analysis and Raman spectroscopy. A metallized coating strongly adhered to the diamond forms during thermal diffusion metallization of diamond by iron. The metallized coating has a complex structural phase composition of iron, a solid solution of carbon in iron and graphite phases. Nickel and cobalt cause intense catalytic graphitization of diamond with the formation of numerous traces of erosion on its surface under the heating conditions specified in the experiment. The observed weak adhesive interaction of these metals with diamond is probably due to the high melting temperatures of the Ni-C and Co-C eutectics, which does not allow the metals to react with diamond under given experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document