numerical minimization
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jakub Kopyciński ◽  
Maciej Łebek ◽  
Maciej Marciniak ◽  
Rafał Ołdziejewski ◽  
Wojciech Górecki ◽  
...  

Describing properties of a strongly interacting quantum many-body system poses a serious challenge both for theory and experiment. In this work, we study excitations of one-dimensional repulsive Bose gas for arbitrary interaction strength using a hydrodynamic approach. We use linearization to study particle (type-I) excitations and numerical minimization to study hole (type-II) excitations. We observe a good agreement between our approach and exact solutions of the Lieb-Liniger model for the particle modes and discrepancies for the hole modes. Therefore, the hydrodynamical equations find to be useful for long-wave structures like phonons and of a limited range of applicability for short-wave ones like narrow solitons. We discuss potential further applications of the method.


2021 ◽  
Author(s):  
Adrian Brown

Abstract This paper discusses the mathematical aspects of band fitting and introduces the Asymmetric Gaussian curve and its tangent space for the first time. First, we derive an equation for an Asymmetric Gaussian shape. We then derive a rule for the resolution of two Gaussian shaped bands. We then use the Asymmetrical Gaussian equation to derive a Master Equation to fit two overlapping bands. We identify regions of the fitting space where the Asymmetric Gaussian fit is optimal, sub optimal and not optimal. We then demonstrate the use of the Asymmetric Gaussian curve to fit four overlapping Gaussian bands, and show how this is relevant to the olivine family spectral complex at 1 μm. We develop a modified model of the olivine family spectral complex based on previous work by Runciman and Burns. The limitations of the asymmetric band fitting method and a critical assessment of three commonly used numerical minimization methods are also provided.


2021 ◽  
Vol 27 ◽  
pp. 23
Author(s):  
Pierluigi Cesana ◽  
Patrick van Meurs

In materials science, wedge disclinations are defects caused by angular mismatches in the crystallographic lattice. To describe such disclinations, we introduce an atomistic model in planar domains. This model is given by a nearest-neighbor-type energy for the atomic bonds with an additional term to penalize change in volume. We enforce the appearance of disclinations by means of a special boundary condition. Our main result is the discrete-to-continuum limit of this energy as the lattice size tends to zero. Our proof relies on energy relaxation methods. The main mathematical novelty of our proof is a density theorem for the special boundary condition. In addition to our limit theorem, we construct examples of planar disclinations as solutions to numerical minimization of the model and show that classical results for wedge disclinations are recovered by our analysis.


2020 ◽  
Vol 501 (1) ◽  
pp. 683-692
Author(s):  
Marvin Sipp ◽  
Björn Malte Schäfer ◽  
Robert Reischke

ABSTRACT The subject of this paper is optimization of weak lensing tomography: we carry out numerical minimization of a measure of total statistical error as a function of the redshifts of the tomographic bin edges by means of a Nelder–Mead algorithm in order to optimize the sensitivity of weak lensing with respect to different optimization targets. Working under the assumption of a Gaussian likelihood for the parameters of a w0wa CDM (cold dark matter) model and using euclid’s conservative survey specifications, we compare an equipopulated, equidistant, and optimized bin setting and find that in general the equipopulated setting is very close to the optimal one, while an equidistant setting is far from optimal and also suffers from the ad hoc choice of a maximum redshift. More importantly, we find that nearly saturated information content can be gained using already few tomographic bins. This is crucial for photometric redshift surveys with large redshift errors. We consider a large range of targets for the optimization process that can be computed from the parameter covariance (or equivalently, from the Fisher matrix), extend these studies to information entropy measures such as the Kullback–Leibler divergence and conclude that in many cases equipopulated binning yields results close to the optimum, which we support by analytical arguments.


Author(s):  
Sergey Ershov ◽  
Alexey Voloboy ◽  
Dmitriy Zhdanov ◽  
Andrey Zhdanov ◽  
Vladimir Frolov

A Monte-Carlo ray tracing is nowadays standard approach for lighting simulation and generation of realistic images. A widely used method for noise reduction in Monte-Carlo ray tracing is combing different means of sampling, known as Multiple Importance Sampling (MIS). For bi-directional Monte-Carlo ray tracing with photon maps (BDPM) the join paths are obtained by merging camera and light sub-paths. Since several light paths are checked against the same camera path and vice versa, the join paths obtained are not statistically independent. Thus the noise in this method does not obey the laws which are correct in simple classic Monte-Carlo with independent samples. And, correspondingly, the MIS weights that minimize that noise must also be calculated differently. In this paper we calculate these weights for a simple model scene directly minimizing the noise of calculation. This is a pure direct numerical minimization that does not involve any doubtful hypothesis or approximations. We show that the weights obtained are qualitatively different from those calculated from classic “balance heuristic” for Monte-Carlo with independent samples. They depend on the scene distance, but not only on scattering properties of the surfaces and the distribution of light source emission.


Author(s):  
Johnathon Garcia ◽  
Kooktae Lee

Abstract In this paper, a novel snake like robot design is presented and analyzed. The structure described desires to obtain a robot that is most like a snake found in nature. This is achieved with the combination of both rigid and soft link structures by implementing a 3D printed rigid link and a soft cast silicone skin. The proposed structure serves to have a few mechanical improvements while maintaining the positives of previous designs. The implementation of the silicone skin presents the opportunity to use synthetic scales and directional friction. The design modifications of this novel design are analyzed on the fronts of the kinematics and minimizing power loss. Minimization of power loss is done through a numerical minimization of three separate parameters with the smallest positive power loss being used. This results in the minimal power loss per unit distance. This research found that the novel structure presented can be effectively described and modeled, such that they could be applied to a constructed model.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 399 ◽  
Author(s):  
Marco Riani ◽  
Anthony C. Atkinson ◽  
Aldo Corbellini ◽  
Domenico Perrotta

Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter α , which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case of linear regression. We developed an alternative estimation procedure using the methods of S-estimation. The rho function so obtained is proportional to one minus a suitably scaled normal density raised to the power α . We used the theory of S-estimation to determine the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of comparisons were made. In one, S power divergence is compared with other S-estimators using four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S power divergence are close to those of Tukey’s biweight. The second set of comparisons is between S power divergence estimation and numerical minimization. Monitoring these two procedures in terms of breakdown point shows that the numerical minimization yields a procedure with larger robust residuals and a lower empirical breakdown point, thus providing an estimate of α leading to more efficient parameter estimates.


2020 ◽  
Vol T171 ◽  
pp. 014001 ◽  
Author(s):  
S Van den Kerkhof ◽  
M Blommaert ◽  
J W Coenen ◽  
S Heuer ◽  
M Baelmans

2020 ◽  
Vol 24 (3 Part B) ◽  
pp. 2256-2266
Author(s):  
Momcilo Spasojevic ◽  
Milovan Jankovic ◽  
Damir Djakovic

This work presents a procedure for direct numerical minimization of entropy production in a diabatic tray column with heat exchanged on the trays as control variables, as opposed to previously used procedures with temperature on the trays as control variables. The procedure, which had previously been demonstrated on a binary mixture, was in this work applied to a multicomponent mixture, with minor modifications. The procedure comprised the complex optimization method and the Ishii-Otto method for solving the equations of a column model based on the iterative Newton-Raphson technique with partial linearization of the equations. The desired separation of the components was realized by the addition of a penalty function to the goal function, i.e. entropy production in the column. The required thermodynamic characteristics were calculated by the Soave equation of state. As an illustration, an industrial debutanizer with five components was used whose data, obtained by simulation, were compared with the optimization results of a diabatic column with the same desired separation and number of trays. After the diabatic column optimization procedure, the value of 91.91 J/Ks was obtained as the best result for entropy production. According to the best solution, entropy production in the diabatic column was 23.2% lower than in the adiabatic column. The heat to be removed from the column increased by 24.7%, while the heat to be added to the column increased by 28.8%.


Sign in / Sign up

Export Citation Format

Share Document