channel analysis
Recently Published Documents


TOTAL DOCUMENTS

890
(FIVE YEARS 247)

H-INDEX

43
(FIVE YEARS 5)

2022 ◽  
Vol 18 (1) ◽  
pp. 1-17
Author(s):  
Josef Danial ◽  
Debayan Das ◽  
Anupam Golder ◽  
Santosh Ghosh ◽  
Arijit Raychowdhury ◽  
...  

This work presents a Cross-device Deep-Learning based Electromagnetic (EM-X-DL) side-channel analysis (SCA) on AES-128, in the presence of a significantly lower signal-to-noise ratio (SNR) compared to previous works. Using a novel algorithm to intelligently select multiple training devices and proper choice of hyperparameters, the proposed 256-class deep neural network (DNN) can be trained efficiently utilizing pre-processing techniques like PCA, LDA, and FFT on measurements from the target encryption engine running on an 8-bit Atmel microcontroller. In this way, EM-X-DL achieves >90% single-trace attack accuracy. Finally, an efficient end-to-end SCA leakage detection and attack framework using EM-X-DL demonstrates high confidence of an attacker with <20 averaged EM traces.


Author(s):  
Takuji Miki ◽  
Makoto Nagata

Abstract Cryptographic ICs on edge devices for internet-of-things (IoT) applications are exposed to an adversary and threatened by malicious side channel analysis. On-chip analog monitoring by sensor circuits embedded inside the chips is one of the possible countermeasures against such attacks. An on-chip monitor circuit consisting of a successive approximation register (SAR) analog-to-digital converter (ADC) and an input buffer acquires a wideband signal, which enables to detects an irregular noise due to an active fault injection and a passive side channel leakage analysis. In this paper, several countermeasures against security attacks utilizing wideband on-chip monitors are reviewed. Each technique is implemented on a prototype chip, and the measurement results prove they can effectively detect and diagnose the security attacks.


2022 ◽  
Author(s):  
Andreas Eckhardt ◽  
Julia Krönung ◽  
Victoria Reibenspiess ◽  
Lennart Jaeger

2022 ◽  
Vol 258 ◽  
pp. 08005
Author(s):  
Eberhard Klempt

A coupled-channel analysis has been performed to identify the spectrum of scalar mesons. The data include BESIII data on radiative J/ψ decays into π0π0, KS KS, ηη, and ωϕ, 15 Dalitz plots from ¯N annihilation at rest at LEAR, the CERN-Munich multipoles for ππ elastic scattering, the S-wave from BNL data on ππ scattering into KS KS, from GAMS data on ππ π0π0; ηη, and ηη', and NA48/2 data on low-mass ππ interactions from K± → ππe±v decays. The analysis reveals the existence of ten scalar isoscalar resonances. The resonances can be grouped into two classes: resonances with a large SU(3) singlet component and those with a large octet component. The production of isoscalar resonances with a large octet component should be suppressed in radiative J/ψ decays. However, in a limited mass range centered at 1900MeV, these mesons are produced abundantly. Mainly-singlet scalar resonances are produced over the full mass range but with larger intensity at 1900MeV. The total scalar isoscalar yield in radiative decays into scalar mesons shows a clear peak which is interpreted as the scalar glueball of lowest mass.


Ion Channel sensors have several applications including DNA sequencing, biothreat detection, and medical applications. Ion-channel sensors mimic the selective transport mechanism of cell membranes and can detect a wide range of analytes at the molecule level. Analytes are sensed through changes in signal patterns. Papers in the literature have described different methods for ion channel signal analysis. In this paper, we describe a series of new graphical tools for ion channel signal analysis which can be used for research and education. The paper focuses on the utility of this tools in biosensor classes. Teaching signal processing and machine learning for ion channel sensors is challenging because of the multidisciplinary content and student backgrounds which include physics, chemistry, biology and engineering. The paper describes graphical ion channel analysis tools developed for an on-line simulation environment called J-DSP. The tools are integrated and assessed in a graduate bio-sensor course through computer laboratory exercises.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 95
Author(s):  
Szymon Sarna ◽  
Robert Czerwinski

One-time password algorithms are widely used in digital services to improve security. However, many such solutions use a constant secret key to encrypt (process) one-time plaintexts. A paradigm shift from constant to one-time keys could introduce tangible benefits to the application security field. This paper analyzes a one-time password concept for the Rivest–Shamir–Adleman algorithm, in which each key element is hidden, and the value of the modulus is changed after each encryption attempt. The difference between successive moduli is exchanged between communication sides via an unsecure channel. Analysis shows that such an approach is not secure. Moreover, determining the one-time password element (Rivest–Shamir–Adleman modulus) can be straightforward. A countermeasure for the analyzed algorithm is proposed.


2021 ◽  
Vol 57 (6) ◽  
pp. 1-7
Author(s):  
Ayan Biswas ◽  
Anindya Banerji ◽  
Pooja Chandravanshi ◽  
Rupesh Kumar ◽  
Ravindra P. Singh

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
B. Kopf ◽  
M. Albrecht ◽  
H. Koch ◽  
M. Küßner ◽  
J. Pychy ◽  
...  

AbstractA sophisticated coupled-channel analysis is presented that combines different processes: the channels $${\pi ^0\pi ^0\eta }$$ π 0 π 0 η , $${\pi ^0\eta \eta }$$ π 0 η η and $${K^+K^-\pi ^0}$$ K + K - π 0 from $${{\bar{p}}p}$$ p ¯ p annihilations, the P- and D-wave amplitudes of the $$\pi \eta $$ π η and $$\pi \eta ^\prime $$ π η ′ systems produced in $$\pi ^-p$$ π - p scattering, and data from $${\pi \pi }$$ π π -scattering reactions. Hence our analysis combines the data sets used in two independent previous analyses published by the Crystal Barrel experiment and by the JPAC group. Based on the new insights from these studies, this paper aims at a better understanding of the spin-exotic $$\pi _1$$ π 1 resonances in the light-meson sector. By utilizing the K-matrix approach and realizing the analyticity via Chew-Mandelstam functions the amplitude of the spin-exotic wave can be well described by a single $$\pi _1$$ π 1 pole for both systems, $$\pi \eta $$ π η and $$\pi \eta ^\prime $$ π η ′ . The mass and the width of the $$\pi _1$$ π 1 -pole are measured to be $$(1623 \, \pm \, 47 \, ^{+24}_{-75})\, \mathrm {MeV/}c^2$$ ( 1623 ± 47 - 75 + 24 ) MeV / c 2 and $$(455 \, \pm 88 \, ^{+144}_{-175})\, \mathrm {MeV}$$ ( 455 ± 88 - 175 + 144 ) MeV .


2021 ◽  
Vol 39 ◽  
pp. 301308
Author(s):  
Quan Le ◽  
Luis Miralles-Pechuán ◽  
Asanka Sayakkara ◽  
Nhien-An Le-Khac ◽  
Mark Scanlon

2021 ◽  
Vol 46 (4) ◽  
Author(s):  
Marc Tuters ◽  
Anthony G. Burton

Background: This article examines how the rhetorical style of the “alt-right” builds a political audience through a study of the Rebel, a Canadian YouTube news channel. Analysis: This study analyzes the rhetoric of two hosts on the Rebel, Lauren Southern and Gavin McInnes, and finds their style marked by the use of the vernacular slang associated with subcultural communities of the alt-right. Conclusion and implications: The unique rhetorical style on display points to micro-celebrity culture and techniques as a key to the proliferation of the alt-right. Contexte : En étudiant la chaîne canadienne the Rebel, cet article examine comment la rhétorique de la « droite alternative » construit une audience politique. Analyse : Nous analysons la rhétorique de deux hôtes, Lauren Southern et Gavin McInnes, et trouve que leur style est marquée par l’utilisation de l’argot vernaculaire associé aux communautés du « alt-right ». Conclusions et implications : Leur style exposé comment la culture et les techniques des micro-célébrités influence la prolifération de l’alt-right.


Sign in / Sign up

Export Citation Format

Share Document