macroalgal assemblage
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Timothy Jones

<p>Monitoring marine ecosystems is essential for the conservation and management of marine biodiversity as it is central to the development of sustainable management practices and for assessing the effectiveness of the increasing number of marine reserves (MR) globally. Monitoring data are often collected in MRs to assess the state of natural marine systems in the absence of anthropogenic disturbance or to assess recovery of previously impacted species. In recent years, MR designation has attempted to move away from ad hoc approaches to MR establishment and towards using existing species distribution and abundance data to define protected areas. Given the logistics and cost of collecting biological data in the marine environment, effective methods are required to successfully demonstrate changes associated with MRs and to identify the spatial distribution of organisms and habitats for the planning of further MRs. The aim of this thesis was to identify effective protocols for the monitoring of fish and invertebrate species inside MRs in New Zealand, and to develop and apply methodologies to identify spatial distribution patterns relevant to marine spatial planning.  Using baseline data of fish and invertebrate species abundances for the Taputeranga MR I performed prospective power analyses to identify the most cost-effective monitoring approach for subsequent monitoring. Based on before-after-control-impact (BACI) tests the power to conclude statistically that abundances were higher at MR sites was low for even large simulated changes in abundance (two-fold or four-fold increases) for most species. Due to differences in baseline abundance and spatio-temporal variance terms, power varied considerably among species, highlighting the difficulty of monitoring all species to the same degree, whilst also remaining cost-effective. Furthermore, the results highlight the need for temporally replicated survey designs as “one-off” surveys had much lower power than those that were temporally replicated.  Longer term monitoring effectiveness was analysed using three long-term datasets from MRs in the South Island of New Zealand. I analysed the power of alternate underwater visual census (UVC) monitoring configurations to conclude statistically that there were increasing/decreasing trends in abundance, as well as the precision and accuracy of trend estimates. Overall even the highest replication designs considered had low power (< 80%) to conclude there was a non-zero trend even when simulated data represented trends equivalent to the population doubling or halving over ten years. The most cost-effective monitoring design varied among species and MRs, further highlighting that monitoring choices need to be location- and species-specific. A general finding, however, was that increasing the number of sites was almost always more beneficial than increasing the number of transects per site. Based on these results, I recommend that monitoring design planning focuses more specifically on assessments of precision and accuracy of estimated parameters, with less focus on power, as this places greater emphasis on interpreting monitoring data in terms of potential biological significance rather than testing for statistical significance.  Monitoring can never achieve complete coverage of large areas therefore methods for extrapolating or predicting species or habitats to un-surveyed locations are necessary for evaluating large-scale spatial distributions. To address this I used modelling techniques to identify the spatial variation in species and habitats along the Wellington south coast, with a particular focus on elucidating the potential and realised effects of wave exposure. A wave simulation model (SWAN) was used to identify the spatial variation in wave exposure relevant to intertidal and subtidal communities. In particular the spatial variation in wave forces was compared to the distribution of two subtidal macroalgal species, Macrocystis pyrifera and Ecklonia radiata, taking into consideration the biomechanical thresholds of damage for these plants. Despite considerable wave forces during winter storms, healthy E. radiata is unlikely to be damaged, whilst larger (>15 m stipe length) M. pyrifera plants are likely to be damaged in certain locations dependent on local sheltering effects. Furthermore, the distribution of M. pyrifera from aerial imagery coincided with areas that were predicted to have lower wave forces, suggesting that the distribution of M. pyrifera may be related to wave exposure.  I subsequently constructed species distribution models revealing the relationship between intertidal species distributions and environmental factors, as a predictive baseline of the current distributions of species. The abundances of Chamaesipho barnacle species were found to be best described by wave exposure, with increased cover correlated with increasing wave exposure, while contrasting patterns were observed for C. brunnea and C. columna with respect to distance from the harbour entrance, suggesting differential larval supply or differential responses to changing water column characteristics. Macroalgal assemblage composition was explained predominantly by wave exposure, with a rich macroalgal assemblage at the less exposed locations, and more exposed locations exhibiting a community consisting of coralline algal species and the large brown alga Durvillaea antarctica. The predictive models were then used to predict species distributions for a section of coastline demonstrating how this form of modelling can be used to maximise the potential of monitoring data.  Finally, a literature keyword search along with methodological developments and results from previous chapters are used in the final chapter to develop a framework for the collection of data from the planning phase all the way through to long-term monitoring of MRs.</p>


2021 ◽  
Author(s):  
◽  
Timothy Jones

<p>Monitoring marine ecosystems is essential for the conservation and management of marine biodiversity as it is central to the development of sustainable management practices and for assessing the effectiveness of the increasing number of marine reserves (MR) globally. Monitoring data are often collected in MRs to assess the state of natural marine systems in the absence of anthropogenic disturbance or to assess recovery of previously impacted species. In recent years, MR designation has attempted to move away from ad hoc approaches to MR establishment and towards using existing species distribution and abundance data to define protected areas. Given the logistics and cost of collecting biological data in the marine environment, effective methods are required to successfully demonstrate changes associated with MRs and to identify the spatial distribution of organisms and habitats for the planning of further MRs. The aim of this thesis was to identify effective protocols for the monitoring of fish and invertebrate species inside MRs in New Zealand, and to develop and apply methodologies to identify spatial distribution patterns relevant to marine spatial planning.  Using baseline data of fish and invertebrate species abundances for the Taputeranga MR I performed prospective power analyses to identify the most cost-effective monitoring approach for subsequent monitoring. Based on before-after-control-impact (BACI) tests the power to conclude statistically that abundances were higher at MR sites was low for even large simulated changes in abundance (two-fold or four-fold increases) for most species. Due to differences in baseline abundance and spatio-temporal variance terms, power varied considerably among species, highlighting the difficulty of monitoring all species to the same degree, whilst also remaining cost-effective. Furthermore, the results highlight the need for temporally replicated survey designs as “one-off” surveys had much lower power than those that were temporally replicated.  Longer term monitoring effectiveness was analysed using three long-term datasets from MRs in the South Island of New Zealand. I analysed the power of alternate underwater visual census (UVC) monitoring configurations to conclude statistically that there were increasing/decreasing trends in abundance, as well as the precision and accuracy of trend estimates. Overall even the highest replication designs considered had low power (< 80%) to conclude there was a non-zero trend even when simulated data represented trends equivalent to the population doubling or halving over ten years. The most cost-effective monitoring design varied among species and MRs, further highlighting that monitoring choices need to be location- and species-specific. A general finding, however, was that increasing the number of sites was almost always more beneficial than increasing the number of transects per site. Based on these results, I recommend that monitoring design planning focuses more specifically on assessments of precision and accuracy of estimated parameters, with less focus on power, as this places greater emphasis on interpreting monitoring data in terms of potential biological significance rather than testing for statistical significance.  Monitoring can never achieve complete coverage of large areas therefore methods for extrapolating or predicting species or habitats to un-surveyed locations are necessary for evaluating large-scale spatial distributions. To address this I used modelling techniques to identify the spatial variation in species and habitats along the Wellington south coast, with a particular focus on elucidating the potential and realised effects of wave exposure. A wave simulation model (SWAN) was used to identify the spatial variation in wave exposure relevant to intertidal and subtidal communities. In particular the spatial variation in wave forces was compared to the distribution of two subtidal macroalgal species, Macrocystis pyrifera and Ecklonia radiata, taking into consideration the biomechanical thresholds of damage for these plants. Despite considerable wave forces during winter storms, healthy E. radiata is unlikely to be damaged, whilst larger (>15 m stipe length) M. pyrifera plants are likely to be damaged in certain locations dependent on local sheltering effects. Furthermore, the distribution of M. pyrifera from aerial imagery coincided with areas that were predicted to have lower wave forces, suggesting that the distribution of M. pyrifera may be related to wave exposure.  I subsequently constructed species distribution models revealing the relationship between intertidal species distributions and environmental factors, as a predictive baseline of the current distributions of species. The abundances of Chamaesipho barnacle species were found to be best described by wave exposure, with increased cover correlated with increasing wave exposure, while contrasting patterns were observed for C. brunnea and C. columna with respect to distance from the harbour entrance, suggesting differential larval supply or differential responses to changing water column characteristics. Macroalgal assemblage composition was explained predominantly by wave exposure, with a rich macroalgal assemblage at the less exposed locations, and more exposed locations exhibiting a community consisting of coralline algal species and the large brown alga Durvillaea antarctica. The predictive models were then used to predict species distributions for a section of coastline demonstrating how this form of modelling can be used to maximise the potential of monitoring data.  Finally, a literature keyword search along with methodological developments and results from previous chapters are used in the final chapter to develop a framework for the collection of data from the planning phase all the way through to long-term monitoring of MRs.</p>


2021 ◽  
Author(s):  
Young Wook Ko ◽  
Dong Seok Lee ◽  
Sanghee Kim ◽  
Jeong Ha Kim ◽  
Han-Gu Choi

Abstract Short-term variability, spatial variability, and the vertical distribution of an intertidal macroalgal assemblage were examined on the coast of Barton Peninsula, Maxwell Bay, King George Island, Antarctica. Sampling was performed during the three austral summer seasons from November 2016 to January 2019. The sampling interval for short-term variability was 1–2 months. Sampling for spatial variability was performed at two sites 400 m apart. Eighteen algal species were identified, with 75% relative coverage of the predominant red Iridaea cordata and endemic brown Phaeurus antarcticus. Summer abundance can be described as a shift from I. cordata to P. antarcticus, and the change in color is intuitively presented using a contour plot for the first time. Short-term variation in the macroalgal assemblage showed 78.35% similarity between one month and 64.61% similarity between two months. The spatial variation analysis indicated 77.13% similarity between the assemblage at the two sites. If global warming continues, the algal population of this region is expected to expand. P. antarcticus, which is primarily found in the subtidal zone, is predicted to relocate southward or higher in the near future. Long-term monitoring of this research region, which is dominated by the two species, is warranted to determine the impact of global warming on the macroalgal assemblage.


2020 ◽  
Vol 29 (14) ◽  
pp. 4173-4192
Author(s):  
Dan A. Smale ◽  
Graham Epstein ◽  
Esther Hughes ◽  
Andrew O. M. Mogg ◽  
Pippa J. Moore

Author(s):  
Carla Silva ◽  
Marco Lemos ◽  
Rui Gaspar ◽  
Carlos Gonçalves ◽  
João Neto

Biological invasions represent a threat to ecosystems, through competition and habitat destruction, which may result in significant changes of the invaded community. Asparagopsis armata is a red macroalgae (Rodophyta) globally recognized as an invasive species. It is found from the intertidal to shallow subtidal areas, on rock or epiphytic, forming natural vegetation belts on exposed coasts. This study evaluated the variations on native intertidal seaweed and macroinvertebrate assemblages inhabiting rock pools with and without the presence of the invasive macroalgae A. armata. To achieve this, manipulation experiments on Atlantic (Portugal) rock pools were done. Three rock pools were maintained without A. armata by manual removal of macroalgae, and three others were not experimentally manipulated during the study period and A. armata was freely present. In this study the variations between different rock pools were assessed. Results showed different patterns in the macroalgae composition of assemblages but not for the macrobenthic communities. Ellisolandia elongata was the main algal species affected by the invasion of A. armata. Invaded pools tended to show less species richness, showing a more constant and conservative structure, with lower variation of its taxonomic composition than the pools not containing A. armata, where the variability between samples was always higher. Despite the importance of the achieved results, further data based on observation of long-term series are needed, in order to further understand more severe effects of the invader A. armata on native macroalgal assemblage.


2018 ◽  
Author(s):  
Sarah Caronni ◽  
Chiara Calabretti ◽  
Giulia Ceccherelli ◽  
Sandra Citterio ◽  
Maria Anna Delaria ◽  
...  

In this paper the results of a manipulative experiment aimed to evaluate the interactive short- and long-term effect of three different stressors, herbivory, nutrient and mucilage, on a macroalgal assemblage are presented. The experiment was conducted in Tavolara Punta Coda Cavallo Marine Protected Area during a bloom of the benthic mucilage-producing microalga Chrysophaeum taylorii Lewis and Bryan (Pelagophyceae), recently spreading in the Mediterranean Sea. On a rocky substratum, 18 plots 20x20 cm in size were prepared and, according to different treatments, nutrients were added in some of them to simulate eutrophication, macroalgae were removed to simulate clearings produced by grazers and mucilage was manually removed to simulate mucilage-free conditions. Differences in the composition of macroalgal assemblages were found when considering the short term effect of the considered stressors, and also the response of the most abundant taxa (DFA, ECA, Dictyotales, Laurencia spp. and Padina pavonica) varied among treatments, proving that a combined effect of such stressors on the recovery of macroalgae was present. On the contrary, the effect of treatments was neither highlighted on the most abundant algae nor on the whole structure of the macroalgal assemblage.


2018 ◽  
Author(s):  
Sarah Caronni ◽  
Chiara Calabretti ◽  
Giulia Ceccherelli ◽  
Sandra Citterio ◽  
Maria Anna Delaria ◽  
...  

In this paper the results of a manipulative experiment aimed to evaluate the interactive short- and long-term effect of three different stressors, herbivory, nutrient and mucilage, on a macroalgal assemblage are presented. The experiment was conducted in Tavolara Punta Coda Cavallo Marine Protected Area during a bloom of the benthic mucilage-producing microalga Chrysophaeum taylorii Lewis and Bryan (Pelagophyceae), recently spreading in the Mediterranean Sea. On a rocky substratum, 18 plots 20x20 cm in size were prepared and, according to different treatments, nutrients were added in some of them to simulate eutrophication, macroalgae were removed to simulate clearings produced by grazers and mucilage was manually removed to simulate mucilage-free conditions. Differences in the composition of macroalgal assemblages were found when considering the short term effect of the considered stressors, and also the response of the most abundant taxa (DFA, ECA, Dictyotales, Laurencia spp. and Padina pavonica) varied among treatments, proving that a combined effect of such stressors on the recovery of macroalgae was present. On the contrary, the effect of treatments was neither highlighted on the most abundant algae nor on the whole structure of the macroalgal assemblage.


2017 ◽  
Vol 567 ◽  
pp. 249-256 ◽  
Author(s):  
ACL Prestes ◽  
E Cacabelos ◽  
AI Neto ◽  
GM Martins

Sign in / Sign up

Export Citation Format

Share Document