warm water volume
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Kyle J. Turner ◽  
Natalie J. Burls ◽  
Anna von Brandis ◽  
Joke Lübbecke ◽  
Martin Claus

AbstractInterannual sea surface temperature (SST) variations in the tropical Atlantic Ocean lead to anomalous atmospheric circulation and precipitation patterns with important ecological and socioeconomic consequences for the semiarid regions of sub-Saharan Africa and northeast Brazil. This interannual SST variability is characterized by three modes: an Atlantic meridional mode featuring an anomalous cross-equatorial SST gradient that peaks in boreal spring; an Atlantic zonal mode (Atlantic Niño mode) with SST anomalies in the eastern equatorial Atlantic cold tongue region that peaks in boreal summer; and a second zonal mode of variability with eastern equatorial SST anomalies peaking in boreal winter. Here we investigate the extent to which there is any seasonality in the relationship between equatorial warm water recharge and the development of eastern equatorial Atlantic SST anomalies. Seasonally stratified cross-correlation analysis between eastern equatorial Atlantic SST anomalies and equatorial heat content anomalies (evaluated using warm water volume and sea surface height) indicate that while equatorial heat content changes do occasionally play a role in the development of boreal summer Atlantic zonal mode events, they contribute more consistently to Atlantic Niño II, boreal winter events. Event and composite analysis of ocean adjustment with a shallow water model suggest that the warm water volume anomalies originate mainly from the off-equatorial northwestern Atlantic, in agreement with previous studies linking them to anomalous wind stress curl associated with the Atlantic meridional mode.


2021 ◽  
Author(s):  
Anika Arora

Abstract This study is an attempt to understand the onset and evolution of canonical El Niño (~ 18–24 months; CE) and protracted El Niño (> greater than 3 years; PE) compared to the normal state (NS) in an ocean model. Indo-Pacific warm pool indicates higher values of SST before the onset of strong canonical El Niño compared to the normal state and protracted El Niño. The ocean model used in the study shows systematic SST bias in the Indo-Pacific Ocean with higher (cooler) values of temperature in western (eastern) Pacific during NS, CE, and PE exhibiting La Niña like conditions. The ocean model exhibits deeper thermocline depth in the western equatorial Pacific Ocean (PO) during PE and CE compared to NS indicating higher values of heat content (warm water volume). Despite the presence of higher warm water volume in the western PO before the onset of El Niño, the difference in the variability of surface wind forcing during the preceding months determines the type of El Niño. The interplay of surface wind forcing among the NS, PE, and CE states without altering the ocean state can modify the subsurface propagation in the equatorial Pacific Ocean. A change in longitudinal extent of upwelling Kelvin waves towards eastern PO along with the change in surface wind forcing decides the fate of El Niño in the eastern Pacific.


2021 ◽  
Author(s):  
Anika Arora

Abstract This study is an attempt to understand the onset and evolution of canonical El Niño (~ 18–24 months; CE) and protracted El Niño (> greater than 3 years; PE) compared to the normal state (NS) in an ocean model. Indo-Pacific warm pool indicates higher values of SST before the onset of strong canonical El Niño compared to the normal state and protracted El Niño. The ocean model used in the study shows systematic SST bias in the Indo-Pacific Ocean with higher (cooler) values of temperature in western (eastern) Pacific during NS, CE, and PE exhibiting La Niña like conditions. The ocean model exhibits deeper thermocline depth in the western equatorial Pacific Ocean (PO) during PE and CE compared to NS indicating higher values of heat content (warm water volume). Despite the presence of higher warm water volume in the western PO before the onset of El Niño, the difference in the variability of surface wind forcing during the preceding months determines the type of El Niño. The interplay of surface wind forcing among the NS, PE, and CE states without altering the ocean state can modify the subsurface propagation in the equatorial Pacific Ocean. A change in longitudinal extent of upwelling Kelvin waves towards eastern PO along with the change in surface wind forcing decides the fate of El Niño in the eastern Pacific.


2021 ◽  
pp. 1-59
Author(s):  
Caihong Wen ◽  
Arun Kumar ◽  
Michelle L’ Heureux ◽  
Yan Xue ◽  
Emily Becker

AbstractThe relationship between the Warm Water Volume (WWV) ENSO precursor and ENSO SST weakened substantially after ~2000, coinciding with a degradation in dynamical model ENSO prediction skill. It is important to understand the drivers of the equatorial thermocline temperature variations and their linkage to ENSO onsets. In this study, a set of ocean reanalyses is employed to assess factors responsible for the variation of the equatorial Pacific Ocean thermocline during 1982-2019. Off-equatorial thermocline temperature anomalies carried equatorward by the mean meridional currents associated with Pacific Tropical Cells are shown to play an important role in modulating the central equatorial thermocline variations, which is rarely discussed in the literature. Further, ENSO events are delineated into two groups based on precursor mechanisms: the western equatorial type (WEP) ENSO, when the central equatorial thermocline is mainly influenced by the zonal propagation of anomalies from the western Pacific, and the off-equatorial central Pacific (OCP) ENSO, when off-equatorial central thermocline anomalies play the primary role. WWV is found to precede all WEP ENSO by 6-9 months, while the correlation is substantially lower for OCP ENSO events. In contrast, the central tropical Pacific (CTP) precursor, which includes off-equatorial thermocline signals, has a very robust lead correlation with the OCP ENSO. Most OCP ENSO events are found to follow the same ENSO conditions, and the number of OCP ENSO increases substantially since the 21st century. These results highlight the importance of monitoring off-equatorial subsurface preconditions for ENSO prediction and to understand multi-year ENSO.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 365
Author(s):  
Shouwen Zhang ◽  
Hui Wang ◽  
Hua Jiang ◽  
Wentao Ma

In this study, forecast skill over four different periods of global climate change (1982–1999, 1984–1996, 2000–2018, and 2000–2014) is examined using the hindcasts of five models in the North American Multimodel Ensemble. The deterministic evaluation shows that the forecasting skills of the Niño3.4 and Niño3 indexes are much lower during 2000–2018 than during 1982–1999, indicating that the previously reported decline in forecasting skill continues through 2018. The decreases in skill are most significant for the target months from May to August, especially for medium to long lead times, showing that the forecasts suffer more from the effect of the spring predictability barrier (SPB) post-2000. Relationships between the extratropical Pacific signal and the El Niño-Southern Oscillation (ENSO) weakened after 2000, contributing to a reduction in inherent predictability and skills of ENSO, which may be connected with the forecasting skills decline for medium to long lead times. It is a great challenge to predict ENSO using the memory of the local ocean itself because of the weakening intensity of the warm water volume (WWV) and its relationship with ENSO. These changes lead to a significant decrease in the autocorrelation coefficient of the persistence forecast for short to medium lead months. Moreover, for both the Niño3.4 and Niño3 indexes, after 2000, the models tend to further underestimate the sea surface temperature anomalies (SSTAs) in the El Niño developing year but overestimate them in the decaying year. For the probabilistic forecast, the skills post-2000 are also generally lower than pre-2000 in the tropical Pacific, and in particular, they decayed east of 120° W after 2000. Thus, the advantages of different methods, such as dynamic modeling, statistical methods, and machine learning methods, should be integrated to obtain the best applicability to ENSO forecasts and to deal with the current low forecasting skill phenomenon.


2021 ◽  
Author(s):  
Seungmok Paik ◽  
Seung-Ki Min ◽  
Carley E. Iles ◽  
Erich M. Fischer ◽  
Andrew P. Schurer

<p>This study identifies a crucial cause of the large uncertainty in global precipitation response after volcanic eruptions. We find an important contribution of diverse El Niño responses to the inter-simulation spread in the global monsoon drying responses to tropical eruptions. Most Coupled Model Intercomparison Project Phase 5 (CMIP5) models simulate El Niño–like equatorial eastern Pacific warming at the year after eruptions but with different amplitudes, which drive a large spread of summer monsoon weakening and corresponding precipitation reduction. Two factors are further identified for the diverse El Niño responses among CMIP5 model simulations. First, difference in imposed volcanic forcings induces systematic differences in the Maritime Continent precipitation drying and subsequent westerly winds over equatorial western Pacific, accounting for a large portion (29%) of inter-simulation spread in El Niño intensities following eruptions. In addition, the internally generated warm water volume over the equatorial western Pacific in the pre-eruption month also contributes to the diverse El Niño development, explaining about 14% of the total inter-simulation variance through the recharge oscillator mechanism. Our findings based on CMIP5 multi-model simulations confirm that reliable estimates of the volcanic forcing magnitude as well as the pre-eruption oceanic condition are required to obtain more reliable simulations or predictions of the hydrological responses to tropical eruptions.</p>


2020 ◽  
Vol 33 (22) ◽  
pp. 9945-9964
Author(s):  
Maurice F. Huguenin ◽  
Ryan M. Holmes ◽  
Matthew H. England

AbstractThe equatorial Pacific warm water volume (WWV), defined as the volume of water warmer than 20°C near the equator, is a key predictor for El Niño–Southern Oscillation (ENSO), and yet much about the individual processes that influence it remains unknown. In this study, we conduct idealized ENSO simulations forced with symmetric El Niño– and La Niña–associated atmospheric anomalies as well as a historical 1979–2016 hindcast simulation. We use the water mass transformation framework to examine the individual contributions of diabatic and adiabatic processes to changes in WWV. We find that in both sets of simulations, El Niño’s discharge and La Niña’s recharge periods are initiated by diabatic fluxes of volume across the 20°C isotherm associated with changes in surface forcing and vertical mixing. Changes in adiabatic horizontal volume transport above 20°C between the equator and subtropical latitudes dominate at a later stage. While surface forcing and vertical mixing deplete WWV during El Niño, surface forcing during La Niña drives a large increase partially compensated for by a decrease driven by vertical mixing. On average, the ratio of diabatic to adiabatic contributions to changes in WWV during El Niño is about 40% to 60%; during La Niña this ratio changes to 75% to 25%. The increased importance of the diabatic processes during La Niña, especially the surface heat fluxes, is linked to the shoaling of the 20°C isotherm in the eastern equatorial Pacific and is a major source of asymmetry between the two ENSO phases, even in the idealized simulations where the wind forcing and adiabatic fluxes are symmetric.


2020 ◽  
pp. 1-50
Author(s):  
Keri Kodama ◽  
Natalie J. Burls ◽  
Laurie Trenary

AbstractWind power, defined as the energy received by the ocean from wind, has been identified as a potentially viable precursor of ENSO. The correlation between tropical Pacific wind power anomalies and eastern equatorial Pacific sea surface temperature anomalies can be enhanced over a range of lead times by applying an empirical adjusted framework that accounts for both the underlying climatological state upon which a wind power perturbation acts and the directionality of wind anomalies. Linear regression is used to assess the seasonal prediction skill of adjusted wind power in comparison to unadjusted, as well as the conventional ENSO predictors wind stress and warm water volume. The forecast skill of each regression model is evaluated in a 1800-year preindustrial climate simulation (CESM-LENS), as well as 23 years of observations. The simulation results show that each predictor’s effectiveness varies considerably with sample, providing a measure of the uncertainty involved in evaluating prediction skill based on the short observational record. The influence of climatological biases is however a demonstrable concern for results from the simulated climate system. Despite the short record, the observational analysis indicates that adjusted wind power skill is comparable to the conventional dynamical predictors and notably is significantly more predictable than unadjusted wind power when initialized in the summer. Moreover, the adjusted framework results in a reduction of error when evaluating wind power associated with wind bursts, reinforcing previous findings that the adjusted framework is particularly useful for capturing the ENSO response to westerly wind bursts.


2020 ◽  
pp. 1-38
Author(s):  
S. Neske ◽  
S. McGregor ◽  
M. Zeller ◽  
D. Dommenget

AbstractThis study demonstrates that the generalization that strong anomalous equatorial Pacific westerly (easterly) winds during El Niño (La Niña) events displays strong adjusted warm water volume (WWV) discharges (recharges) is often incorrect. Using ocean model simulations, we categorize the oceanic adjusted responses to strong anomalous equatorial winds into two categories: (i) transitioning (consistent with the above generalization); and (ii) neutral adjusted responses (with negligible WWV re- and discharge) During the 1980-2016 period only 47% of strong anomalous equatorial winds are followed by transitioning adjusted responses, while the remaining are followed by neutral adjusted responses. Moreover, 55% (only 30%) of the strongest winds lead to transitioning adjusted responses during the pre-2000 (post-2000) period in agreement with the previously reported post-2000 decline of WWV lead time to El Niño-Southern Oscillation (ENSO) events. The prominent neutral adjusted WWV response is shown to be largely excited by anomalous wind stress forcing with a weaker curl (on average consistent with a higher ratio of off-equatorial to equatorial wind events) and weaker Rossby wave projection than the transitioning adjusted response. We also identify a prominent ENSO phase asymmetry where strong anomalous equatorial westerly winds (i.e., El Niño events) are roughly 1.6 times more likely to strongly discharge WWV than strong anomalous equatorial easterly winds (i.e., La Niña events) are to strongly recharge WWV. This ENSO phase asymmetry may be added to the list of mechanisms proposed to explain why El Niño events have a stronger tendency to be followed by La Niña events than vice versa.


Sign in / Sign up

Export Citation Format

Share Document