ocean coupling
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 36)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Rei Chemke

AbstractBy modulating the distribution of heat, precipitation and moisture, the Hadley cell holds large climate impacts at low and subtropical latitudes. Here we show that the interannual variability of the annual mean Hadley cell strength is ~ 30% less in the Northern Hemisphere than in the Southern Hemisphere. Using a hierarchy of ocean coupling experiments, we find that the smaller variability in the Northern Hemisphere stems from dynamic ocean coupling, which has opposite effects on the variability of the Hadley cell in the Southern and Northern Hemispheres; it acts to increase the variability in the Southern Hemisphere, which is inversely linked to equatorial upwelling, and reduce the variability in the Northern Hemisphere, which shows a direct relation with the subtropical wind-driven overturning circulation. The important role of ocean coupling in modulating the tropical circulation suggests that further investigation should be carried out to better understand the climate impacts of ocean-atmosphere coupling at low latitudes.


2021 ◽  
Vol 18 (23) ◽  
pp. 6349-6375
Author(s):  
Kiefer O. Forsch ◽  
Lisa Hahn-Woernle ◽  
Robert M. Sherrell ◽  
Vincent J. Roccanova ◽  
Kaixuan Bu ◽  
...  

Abstract. Glacial meltwater from the western Antarctic Ice Sheet is hypothesized to be an important source of cryospheric iron, fertilizing the Southern Ocean, yet its trace-metal composition and factors that control its dispersal remain poorly constrained. Here we characterize meltwater iron sources in a heavily glaciated western Antarctic Peninsula (WAP) fjord. Using dissolved and particulate ratios of manganese to iron in meltwaters, porewaters, and seawater, we show that surface glacial melt and subglacial plumes contribute to the seasonal cycle of iron and manganese within a fjord still relatively unaffected by climate-change-induced glacial retreat. Organic ligands derived from the phytoplankton bloom and the glaciers bind dissolved iron and facilitate the solubilization of particulate iron downstream. Using a numerical model, we show that buoyant plumes generated by outflow from the subglacial hydrologic system, enriched in labile particulate trace metals derived from a chemically modified crustal source, can supply iron to the fjord euphotic zone through vertical mixing. We also show that prolonged katabatic wind events enhance export of meltwater out of the fjord. Thus, we identify an important atmosphere–ice–ocean coupling intimately tied to coastal iron biogeochemistry and primary productivity along the WAP.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Rei Chemke ◽  
Lorenzo M. Polvani ◽  
Jennifer E. Kay ◽  
Clara Orbe

AbstractThe enhanced warming of the Arctic, relative to other parts of the Earth, a phenomenon known as Arctic amplification, is one of the most striking features of climate change, and has important climatic impacts for the entire Northern Hemisphere. Several mechanisms are believed to be responsible for Arctic amplification; however, a quantitative understanding of their relative importance is still missing. Here, using ensembles of model integrations, we quantify the contribution of ocean coupling, both its thermodynamic and dynamic components, to Arctic amplification over the 20th and 21st centuries. We show that ocean coupling accounts for ~80% of the amplification by 2100. In particular, we show that thermodynamic coupling is responsible for future amplification and sea-ice loss as it overcomes the effect of dynamic coupling which reduces the amplification and sea-ice loss by ~35%. Our results demonstrate the utility of targeted numerical experiments to quantify the role of specific mechanisms in Arctic amplification, for better constraining climate projections.


2021 ◽  
Vol 233 ◽  
pp. 109203
Author(s):  
Wei Wang ◽  
Zhonghao Ren ◽  
Gang Ma ◽  
Yang Liu

Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  

Claire L. Parkinson was awarded the 2020 Roger Revelle Medal at the virtual AGU Fall Meeting in December. The medal is for “outstanding contributions in atmospheric sciences, atmosphere-ocean coupling, atmosphere-land coupling, biogeochemical cycles, climate or related aspects of the Earth system.”


2021 ◽  
pp. 1-56
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

AbstractThere is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic and meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic sector variability. This mode accounting for 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre leads to lower surface salinity and density in the sinking region, which reduces deep convection and eventually AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.


Author(s):  
Matt Hawcroft ◽  
Sally Lavender ◽  
Dan Copsey ◽  
Sean Milton ◽  
José Rodríguez ◽  
...  

AbstractFrom late January to early February 2019, a quasi-stationary monsoon depression situated over northeast Australia caused devastating floods. During the first week of February, when the event had its greatest impact in northwest Queensland, record-breaking precipitation accumulations were observed in several locations, accompanied by strong winds, substantial cold maximum temperature anomalies and related wind chill. In spite of the extreme nature of the event, the monthly rainfall outlook for February issued by Australia’s Bureau of Meteorology on 31st January provided no indication of the event. In this study, we evaluate the dynamics of the event and assess how predictable it was across a suite of ensemble model forecasts using the UK Met Office numerical weather prediction (NWP) system, focussing on a one week lead time. In doing so, we demonstrate the skill of the NWP system in predicting the possibility of such an extreme event occurring. We further evaluate the benefits derived from running the ensemble prediction system at higher resolution than used operationally at the Met Office and with a fully coupled dynamical ocean. We show that the primary forecast errors are generated locally, with key sources of these errors including atmosphere-ocean coupling and a known bias associated with the behaviour of the convection scheme around the coast. We note that a relatively low resolution ensemble approach requires limited computing resource, yet has the capacity in this event to provide useful information to decision makers with over aweek’s notice, beyond the duration of many operational deterministic forecasts.


Sign in / Sign up

Export Citation Format

Share Document