atmospheric general circulation models
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 5)

H-INDEX

35
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Wan-Ling Tseng ◽  
Huang-Hsiung Hsu ◽  
Yung-Yao Lan ◽  
Chia-Ying Tu ◽  
Pei-Hsuan Kuo ◽  
...  

Abstract. A one-column turbulent kinetic energy–type ocean mixed-layer model Snow–Ice–Thermocline (SIT) when coupled with three atmospheric general circulation models (AGCMs) to yielded superior Madden–Julian Oscillation (MJO) simulation. SIT is designed to have fine layers similar to those observed near the ocean surface and therefore can realistically simulate the diurnal warm layer and cool skin. This refined discretization of the near ocean surface in SIT provides accurate sea surface temperature (SST) simulation, thus facilitating realistic air–sea interaction. Coupling SIT with European Centre Hamburg Model, Version 5 (ECHAM5); Community Atmosphere Model, Version 5 (CAM5); and High Resolution Atmospheric Model (HiRAM) significantly improved MJO simulation in three coupled AGCMs compared with the AGCM driven with prescribed SST. This study suggests two major improvements to the coupling process. First, during the preconditioning phase of MJO over Maritime Continent (MC), the over underestimated surface latent heat bias in AGCMs can be corrected. Second, during the phase of strongest convection over MC, the change of the intraseasonal circulation in the meridional circulation is the dominant factor in the coupled simulations relative to the uncoupled experiments. The study results indicate that a fine vertical resolution near the surface, which better captures temperature variations in the upper few meters of the ocean, considerably improves different models with different configurations and physical parameterization schemes; this could be an essential factor for accurate MJO simulation.


2020 ◽  
Vol 33 (7) ◽  
pp. 2719-2739 ◽  
Author(s):  
Masakazu Yoshimori ◽  
F. Hugo Lambert ◽  
Mark J. Webb ◽  
Timothy Andrews

AbstractThe fixed anvil temperature (FAT) theory describes a mechanism for how tropical anvil clouds respond to global warming and has been used to argue for a robust positive longwave cloud feedback. A constant cloud anvil temperature, due to increased anvil altitude, has been argued to lead to a “zero cloud emission change” feedback, which can be considered positive relative to the negative feedback associated with cloud anvil warming when cloud altitude is unchanged. Here, partial radiative perturbation (PRP) analysis is used to quantify the radiative feedback caused by clouds that follow the FAT theory (FAT–cloud feedback) and to set this in the context of other feedback components in two atmospheric general circulation models. The FAT–cloud feedback is positive in the PRP framework due to increasing anvil altitude, but because the cloud emission does not change, this positive feedback is cancelled by an equal and opposite component of the temperature feedback due to increasing emission from the cloud. To incorporate this cancellation, the thermal radiative damping with fixed relative humidity and anvil temperature (T-FRAT) decomposition framework is proposed for longwave feedbacks, in which temperature, fixed relative humidity, and FAT–cloud feedbacks are combined. In T-FRAT, the cloud feedback under the FAT constraint is zero, while that under the proportionately higher anvil temperature (PHAT) constraint is negative. The change in the observable cloud radiative effect with FAT–cloud response is also evaluated and shown to be negative due to so-called cloud masking effects. It is shown that “cloud masking” is a misleading term in this context, and these effects are interpreted more generally as “cloud climatology effects.”


2018 ◽  
Vol 31 (13) ◽  
pp. 5071-5087 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Yi Ming ◽  
Ming Zhao ◽  
Jean-Christophe Golaz ◽  
Baoqiang Xiang ◽  
...  

This study describes the performance of two Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation models (AGCMs) in simulating the climatologies of planetary boundary layer (PBL) parameters, with a particular focus on the diurnal cycles. The two models differ solely in the PBL parameterization: one uses a prescribed K-profile parameterization (KPP) scheme with an entrainment parameterization, and the other employs a turbulence kinetic energy (TKE) scheme. The models are evaluated through comparison with the reanalysis ensemble, which is generated from European Centre for Medium-Range Weather Forecasts (ECMWF) twentieth-century reanalysis (ERA-20C), ERA-Interim, NCEP CFSR, and NASA MERRA, and the following systematic biases are identified. The models exhibit widespread cold biases in the high latitudes, and the biases are smaller when the KPP scheme is used. The diurnal cycle amplitudes are underestimated in most dry regions, and the model with the TKE scheme simulates larger amplitudes. For the near-surface winds, the models underestimate both the daily means and the diurnal amplitudes; the differences between the models are relatively small compared to the biases. The role of the PBL schemes in simulating the PBL parameters is investigated through the analysis of vertical profiles. The Sahara, which is suitable for focusing on the role of vertical mixing in dry PBLs, is selected for a detailed analysis. It reveals that compared to the KPP scheme, the heat transport is weaker with the TKE scheme in both convective and stable PBLs as a result of weaker vertical mixing, resulting in larger diurnal amplitudes. Lack of nonlocal momentum transport from the nocturnal low-level jets to the surfaces appears to explain the underestimation of the near-surface winds in the models.


2017 ◽  
Vol 30 (24) ◽  
pp. 10211-10235 ◽  
Author(s):  
Y. Peings ◽  
H. Douville ◽  
J. Colin ◽  
D. Saint Martin ◽  
Gudrun Magnusdottir

This study explores the wintertime extratropical atmospheric response to Siberian snow anomalies in fall, using observations and two distinct atmospheric general circulation models. The role of the quasi-biennial oscillation (QBO) in modulating this response is discussed by differentiating easterly and westerly QBO years. The remote influence of Siberian snow anomalies is found to be weak in the models, especially in the stratosphere where the “Holton–Tan” effect of the QBO dominates the simulated snow influence on the polar vortex. At the surface, discrepancies between composite analyses from observations and model results question the causal relationship between snow and the atmospheric circulation, suggesting that the atmosphere might have driven snow anomalies rather than the other way around. When both forcings are combined, the simulations suggest destructive interference between the response to positive snow anomalies and easterly QBO (and vice versa), at odds with the hypothesis that the snow–North Atlantic Oscillation/Arctic Oscillation [(N)AO] teleconnection in recent decades has been promoted by the QBO. Although model limitations in capturing the relationship exist, altogether these results suggest that the snow–(N)AO teleconnection may be a stochastic artifact rather than a genuine atmospheric response to snow-cover variability. This study adds to a growing body of evidence suggesting that climate models do not capture a robust and stationary snow–(N)AO relationship. It also highlights the need for extending observations and/or improving models to progress on this matter.


2017 ◽  
Author(s):  
Alexandre Cauquoin ◽  
Camille Risi

Abstract. Atmospheric general circulation models (AGCMs) are known to have a warm and isotopically enriched bias over Antarctica. We test here the hypothesis that these biases are consequences of a too diffusive advection. Using the LMDZ-iso model, we show that a good representation of the advection, especially on the horizontal, is very important to reduce the bias in the isotopic contents of precipitation above this area and to improve the modelled water isotopes – temperature relationship. A good advection scheme is thus essential when using GCMs for paleoclimate applications based on polar water isotopes.


Sign in / Sign up

Export Citation Format

Share Document