energy cycle
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 51)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Vol 13 (12) ◽  
pp. 5879-5898
Author(s):  
Jiao Lu ◽  
Guojie Wang ◽  
Tiexi Chen ◽  
Shijie Li ◽  
Daniel Fiifi Tawia Hagan ◽  
...  

Abstract. Land evaporation (ET) plays a crucial role in the hydrological and energy cycle. However, the widely used model-based products, even though helpful, are still subject to great uncertainties due to imperfect model parameterizations and forcing data. The lack of available observed data has further complicated estimation. Hence, there is an urgency to define the global proxy land ET with lower uncertainties for climate-induced hydrology and energy change. This study has combined three existing model-based products – the fifth-generation ECMWF reanalysis (ERA5), Global Land Data Assimilation System Version 2 (GLDAS2), and the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) – to obtain a single framework of a long-term (1980–2017) daily ET product at a spatial resolution of 0.25∘. Here, we use the reliability ensemble averaging (REA) method, which minimizes errors using reference data, to combine the three products over regions with high consistencies between the products using the coefficient of variation (CV). The Global Land Evaporation Amsterdam Model Version 3.2a (GLEAM3.2a) and flux tower observation data were selected as the data for reference and evaluation, respectively. The results showed that the merged product performed well over a range of vegetation cover scenarios. The merged product also captured the trend of land evaporation over different areas well, showing the significant decreasing trend in the Amazon Plain in South America and Congo Basin in central Africa and the increasing trend in the east of North America, west of Europe, south of Asia and north of Oceania. In addition to demonstrating a good performance, the REA method also successfully converged the models based on the reliability of the inputs. The resulting REA data can be accessed at https://doi.org/10.5281/zenodo.4595941 (Lu et al., 2021).


Climate ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 180
Author(s):  
Silas Michaelides

The aim of this study is to investigate whether different Representative Concentration Pathways (RCPs), as they are determined in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), lead to different regimes in the energetics components of the Lorenz energy cycle. The four energy forms on which this investigation is based are the zonal and eddy components of the available potential and kinetic energies. The corresponding transformations between these forms of energy are also studied. RCPs are time-dependent, consistent scenarios of concentrations of radiatively active gases and particles. In the present study, four RCPs are explored, namely, rcp26, rcp45, rcp60, rcp85; these represent projections (for the future period 2006–2100) that result in radiative forcing of approximately 2.6, 4.5, 6.0 and 8.5 Wm−2 at year 2100, respectively, relative to pre-industrial conditions. The results are presented in terms of time projections of the energetics components from 2020 to 2100 and show that the different RCPs yield diverse energetics regimes, consequently impacting the Lorenz energy cycle. In this respect, projections under different RCPs of the Lorenz energy cycle are presented.


2021 ◽  
Author(s):  
Wenzhi Ruan ◽  
Yuhao Zhou ◽  
Rony Keppens

Abstract All solar flares demonstrate a prolonged, hourlong post-flare (or gradual) phase, characterized by arcade-like, post-flare loops (PFLs) visible in many extreme ultraviolet (EUV) passbands. These coronal loops are filled with hot – ~30MK – and dense plasma, evaporated from the chromosphere during the impulsive phase of the flare, and they very gradually recover to normal coronal density and temperature conditions. During this gradual cooling down to ~1MK regimes, much cooler – ~0.01MK – and denser coronal rain is frequently observed inside PFLs. Understanding PFL dynamics in this long-duration, gradual phase is crucial to the entire corona-chromosphere mass and energy cycle. Here we report the first simulation in which a solar flare evolves from pre-flare, over impulsive phase all the way into its gradual phase, which successfully reproduces post-flare coronal rain. This rain results from catastrophic cooling caused by thermal instability, and we analyse the entire mass and energy budget evolution driving this sudden condensation phenomenon. We find that the runaway cooling and rain formation also induces the appearance of dark post-flare loop systems, as observed in EUV channels. We confirm and augment earlier observational findings, suggesting that thermal conduction and radiative losses alternately dominate the cooling of PFLs. Since reconnection-driven flares occur in many astrophysical settings (stellar flares, accretion disks, galactic winds and jets), our study suggests a new and natural pathway to introduce multi-thermal structuring.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kimleng Chuon ◽  
So Young Kim ◽  
Seanghun Meas ◽  
Jin-gon Shim ◽  
Shin-Gyu Cho ◽  
...  

Microbial rhodopsin is a simple solar energy-capturing molecule compared to the complex photosynthesis apparatus. Light-driven proton pumping across the cell membrane is a crucial mechanism underlying microbial energy production. Actinobacteria is one of the highly abundant bacterial phyla in freshwater habitats, and members of this lineage are considered to boost heterotrophic growth via phototrophy, as indicated by the presence of actino-opsin (ActR) genes in their genome. However, it is difficult to validate their function under laboratory settings because Actinobacteria are not consistently cultivable. Based on the published genome sequence of Candidatus aquiluna sp. strain IMCC13023, actinorhodopsin from the strain (ActR-13023) was isolated and characterized in this study. Notably, ActR-13023 assembled with natively synthesized carotenoid/retinal (used as a dual chromophore) and functioned as a light-driven outward proton pump. The ActR-13023 gene and putative genes involved in the chromophore (retinal/carotenoid) biosynthetic pathway were detected in the genome, indicating the functional expression ActR-13023 under natural conditions for the utilization of solar energy for proton translocation. Heterologous expressed ActR-13023 exhibited maximum absorption at 565 nm with practical proton pumping ability. Purified ActR-13023 could be reconstituted with actinobacterial carotenoids for additional light-harvesting. The existence of actinorhodopsin and its chromophore synthesis machinery in Actinobacteria indicates the inherent photo-energy conversion function of this microorganism. The assembly of ActR-13023 to its synthesized chromophores validated the microbial community’s importance in the energy cycle.


Author(s):  
Haijin Cao ◽  
Baylor Fox-Kemper ◽  
Zhiyou Jing

AbstractThe submesoscale energy budget is complex and remains understood only in region-by-region analyses. Based on a series of nested numerical simulations, this study investigated the submesoscale energy budget and flux in the upper ocean of the Kuroshio Extension, including some innovations for examining submesoscale energy budgets in general. The highest-resolution simulation on a ~500 m grid resolves a variety of submesoscale instabilities allowing an energetic analysis in the submesoscale range. The frequency–wavenumber spectra of vertical vorticity variance (i.e., enstrophy) and horizontal divergence variance were used to identify the scales of submesoscale flows as distinct from those of inertia-gravity waves but dominating horizontal divergence variance. Next, the energy transfers between the background scales and the submesoscale were examined. The submesoscale kinetic and potential energy (SMKE and SMPE) were mainly contained in the mixed layer and energized through both barotropic (shear production) and baroclinic (buoyancy production) routes. Averaged over the upper 50 m of ROMS2, the baroclinic transfers amounted to approximately 75% of the sources for the SMKE (3.42 × 10−9 W/kg) versus the remaining 25% (1.12 × 10−9 W/kg) via barotropic downscale KE transfers. The KE field was greatly strengthened by energy sources through the boundary—this flux is larger than the mesoscale-to-submesoscale transfers in this region. Spectral energy production, importantly, reveals upscale KE transfers at larger submesoscales and downscale KE transfers at smaller submesoscales (i.e., a transition from inverse to forward KE cascade). This study seeks to extend our understanding of the energy cycle to the submesoscale and highlight the forward KE cascade induced by upper-ocean submesoscale activities in the research domain.


2021 ◽  
Author(s):  
Sébastien Rougerie-durocher ◽  
René Laprise ◽  
Oumarou Nikiéma

Abstract To conceptualize the uncertainties regarding the mechanisms of extratropical cyclones (EC), a study of their energy cycle can provide key information of their fundamental structure. This study applies a set of equations built from earlier works for a limited-area energy decomposed into temporal mean and deviations. It compares the results obtained with a reference frame that tracks an EC through its eddy kinetic energy with those obtained with a larger but fixed frame. A specific storm that occurred throughout the period of December 10-18th 2004 and simulated by the Canadian Regional Climate Model (CRCM – version 5) was studied. Results support the notion that the moving reference results in larger amplitudes for all temporal deviation components of the cycle than for the fixed reference. A time tendency analysis of the energetic reservoirs reveals noteworthy phases in the storm’s energy, with an increase and decrease occurring during the periods of 10-14 December and 14-18 December, respectively. The energy budget is overall fairly well balanced, with the exception of a lateral boundary term, hkTV , with considerable negative values; this term exhibits a spatially larger scale than the other contributions in the EC. An evaluation of the sensibility of the tracking scheme related to its size and positioning was also performed to determine its influence on the boundary term hkTV.


2021 ◽  
Author(s):  
Noel Clancy ◽  
William Collins ◽  
Pier Luigi Vidale ◽  
Gerd Folberth

<p>Carbon uptake by land ecosystems is a hugely important carbon sink for the Earth's climate. Plants uptake carbon dioxide from the atmosphere via pores on the surface of their leaves called stomata. However, ozone can also be taken up by plants in this way leading to damage to the plant, a decrease in its growth rate and an impact on the carbon cycle. Ozone damage to plants also modifies other processes within the ecosystem such as transpiration and respiration rates, thereby effecting the hydrological cycle and energy cycle. The Joint UK Land and Environment Simulator (JULES) land-surface model includes ozone sensitivity parameters for all its vegetation cover (plant functional types). Our recent results from JULES experiments at FLUXNET sites show that ozone reduces photosynthesis and suppresses transpiration, thereby impacting the carbon, heat and water fluxes in JULES. Furthermore, we identify differences in a quantitative impact on leaf phenology.</p>


2021 ◽  
Author(s):  
Thomas Wilder ◽  
Xiaoming Zhai ◽  
Manoj Joshi ◽  
Dave Munday

<p>Relative wind stress (calculated by including the surface current terms) is known to remove energy from mesoscale eddies, but how they respond to this damping mechanism over their lifetime is poorly understood. A method for predicting eddy energy is made by time stepping forward the energy equation of a linear two-layer model using an analytical relative wind stress damping term. Results of this prediction are then compared with numerical experiments of an idealised two-layer anticyclonic eddy in a high-resolution general circulation model. The energy in both experiments displays a quantitative agreement in relative wind stress damping, though this is not the case when the eddy in the numerical experiment becomes baroclinically unstable. In addition to this well-known relative wind stress damping mechanism, we found that relative wind stress can trigger eddy instabilities sooner, leading to quicker decay. The earlier onset of these instabilities by relative wind stress is observed in a Lorenz energy cycle.</p>


Sign in / Sign up

Export Citation Format

Share Document