broadband spectrum
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 40)

H-INDEX

23
(FIVE YEARS 5)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3376
Author(s):  
Miao Peng ◽  
Hui Luo ◽  
Zhaojian Zhang ◽  
Tengfang Kuang ◽  
Dingbo Chen ◽  
...  

Optical pulling forces, which can pull objects in the source direction, have emerged as an intensively explored field in recent years. Conventionally, optical pulling forces exerted on objects can be achieved by tailoring the properties of an electromagnetic field, the surrounding environment, or the particles themselves. Recently, the idea of applying conventional lenses or prisms as photonic probes has been proposed to realize an optical pulling force. However, their sizes are far beyond the scope of optical manipulation. Here, we design a chiral metalens as the photonic probe to generate a robust optical pulling force. The induced pulling force exerted on the metalens, characterized by a broadband spectrum over 0.6 μm (from 1.517 to 2.117 μm) bandwidth, reached a maximum value of −83.76 pN/W. Moreover, under the illumination of incident light with different circular polarization states, the longitudinal optical force acting on the metalens showed a circular dichroism response. This means that the longitudinal optical force can be flexibly tuned from a pulling force to a pushing force by controlling the polarization of the incident light. This work could pave the way for a new advanced optical manipulation technique, with potential applications ranging from contactless wafer-scale fabrication to cell assembly and even course control for spacecraft.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6609
Author(s):  
Peng Zhang ◽  
Ying Wang ◽  
Yuru Chen ◽  
Xiaohua Lei ◽  
Yi Qi ◽  
...  

A fast real-time demodulation method based on the coarsely sampled spectrum is proposed for transient signals of fiber optic extrinsic Fabry-Perot interferometers (EFPI) sensors. The feasibility of phase demodulation using a coarse spectrum is theoretically analyzed. Based on the coarse spectrum, fast Fourier transform (FFT) algorithm is used to roughly estimate the cavity length. According to the rough estimation, the maximum likelihood estimation (MLE) algorithm is applied to calculate the cavity length accurately. The dense wavelength division multiplexer (DWDM) is used to split the broadband spectrum into the coarse spectrum, and the high-speed synchronous ADC collects the spectrum. The experimental results show that the system can achieve a real-time dynamic demodulation speed of 50 kHz, a static measurement root mean square error (RMSE) of 0.184 nm, and a maximum absolute and relative error distribution of 15 nm and 0.005% of the measurement cavity length compared with optical spectrum analyzers (OSA).


Author(s):  
S Gasparyan ◽  
D Bégué ◽  
N Sahakyan

Abstract The observation of a very-high-energy neutrino by IceCube (IceCube-170922A) and its association with the flaring blazar TXS 0506+056 provided the first multimessenger observations of blazar jets, demonstrating the important role of protons in their dynamics and emission. In this paper, we present SOPRANO, a new conservative implicit kinetic code which follows the time evolution of the isotropic distribution functions of protons, neutrons and the secondaries produced in photo-pion and photo-pair interactions, alongside with the evolution of photon and electron/positron distribution functions. SOPRANO is designed to study leptonic and hadronic processes in relativistic sources such as blazars and gamma-ray bursts. Here, we use SOPRANO to model the broadband spectrum of TXS 0506+056 and 3HSP J095507.9+355101, which are associated with neutrino events, and of the extreme flaring blazar 3C 279. The SEDs are interpreted within the guise of both a hadronic and a hybrid model. We discuss the implications of our assumptions in terms of jet power and neutrino flux.


Author(s):  
P. Thalhammer ◽  
M. Bissinger ◽  
R. Ballhausen ◽  
K. Pottschmidt ◽  
M. T. Wolff ◽  
...  
Keyword(s):  

2021 ◽  
Vol 263 (6) ◽  
pp. 112-122
Author(s):  
Shuaikang Shi ◽  
Huang Xiuchang ◽  
Rao zhiqiang ◽  
Hua hongxing

To clarify the characteristics of unsteady force spectrum of a pump-jet running under inflow turbulent,the turbulence grid and Fourier synthesis method is employed to produce incoming turbulence with spatial flow structure and temporal fluctuation, which is combined with LES (large eddy simulation) to obtain broadband unsteady force spectrum of the pump-jet. The results show that the proposed method could obtain the unsteady force broadband spectrum for duct, stator and rotor. The unsteady force broadband spectrum of the pump-jet is composed of the "hump" around the blade passing frequency and its multiples, the characteristic line spectrum at the stator blade passing frequency and shaft frequency of adjacent stator multiples. With the number of blades increasing, the "hump" becomes more obvious, the characteristic peak changes periodically and reaches the minimum when the number of blades is the number of rotors. Due to the use of the stator and duct, the amplitude of the unsteady force broadband spectrum of the pump-jet is higher than propeller, but the "hump" is not as obvious as propeller. The research is helpful to clarify the unsteady force characteristics of pump-jet induced by turbulence, and provide ideas for the vibration and noise reduction of pump-jet.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yangqi Liu ◽  
Xiang Li ◽  
Tingting Yang ◽  
Jingyu Liu ◽  
Bin Liu ◽  
...  

A flexible broadband terahertz modulator based on a strain-sensitive MXene material is reported. MXene is shown to have high terahertz wave absorption through experimental testing of various substrate samples. Results show that the THz signal transmission increases with increasing stretching degree, which differs obviously from transmission through pure PVAc substrates. Analysis of the terahertz time-domain spectrum and electrical characterization indicate that the sample’s conductivity decreases with increasing stretching degree. The trend and magnitude of the electrical conductivity results are also very similar to those from the time-domain spectrum. MXene is shown to be a simple, efficient terahertz broadband spectrum modulator with transmittance that can be affected by applying external forces.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Andrei Trebushinin ◽  
Svitozar Serkez ◽  
Mykola Veremchuk ◽  
Yakov Rakshun ◽  
Gianluca Geloni

A scheme to generate wide-bandwidth radiation using a step-wise tapered undulator with a segmented structure is proposed. This magnetic field configuration allows to broaden the undulator harmonic spectrum by two orders of magnitude, providing 1 keV bandwidth with spectral flux density exceeding 1016 photons s−1 mm−2 (0.1% bandwidth)−1 at 5 keV on the sample. Such a magnetic setup is applicable to superconducting devices where magnetic tapering cannot be arranged mechanically. The resulting radiation with broadband spectrum and flat-top shape may be exploited at a multipurpose beamline for scanning over the spectrum at time scales of 10–100 ms. The radiation from a segmented undulator is described analytically and derivations with numerical simulations are verified. In addition, a start-to-end simulation of an optical beamline is performed and issues related to the longitudinally distributed radiation source and its image upon focusing on the sample are addressed.


2021 ◽  
Vol 38 (3) ◽  
pp. 961
Author(s):  
Andrey Komarov ◽  
Konstantin Komarov ◽  
Dmitry Meshcheriakov ◽  
Alexander Dmitriev ◽  
Luming Zhao

Sign in / Sign up

Export Citation Format

Share Document