freshwater organisms
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 73)

H-INDEX

36
(FIVE YEARS 4)

Author(s):  
Ann M. Novak ◽  
David F. Treagust

AbstractWe explore how students developed an integrated understanding of scientific ideas and how they applied their understandings in new situations. We examine the incremental development of 7th grade students’ scientific ideas across four iterations of a scientific explanation related to a freshwater system. We demonstrate that knowing how to make use of scientific ideas to explain phenomena needs to be learned just as developing integrated understanding of scientific ideas needs to be learned. Students participated in an open-ended, long-term project-based learning unit, constructing one explanation over time to address, “How healthy is our stream for freshwater organisms and how do our actions on land potentially impact the water quality of the stream?” The explanation developed over several weeks as new data were collected and analyzed. Students discussed evidence by revisiting scientific ideas and including new scientific ideas. This research investigates two questions: (1) As students engage in writing a scientific explanation over time, to what extent do they develop integrated understanding of appropriate scientific ideas? and (2) When writing about new evidence, do these earlier experiences of writing explanations enable students to make use of new scientific ideas in more sophisticated ways? In other words, do earlier experiences allow students to know how to make use of their ideas in these new situations? The results indicated statistically significant effects. Through various iterations of the explanation students included richer discussion using appropriate scientific ideas. Students were also able to make better use of new knowledge in new situations.


2022 ◽  
pp. 128219
Author(s):  
Lisa A. Golding ◽  
Anupama Kumar ◽  
Merrin Adams ◽  
Monique Binet ◽  
Adrienne Gregg ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2667
Author(s):  
Dmitrii A. Matalin ◽  
Dmitrii E. Khramov ◽  
Alexey V. Shuvalov ◽  
Vadim S. Volkov ◽  
Yurii V. Balnokin ◽  
...  

The green microalga genus Dunaliella is mostly comprised of species that exhibit a wide range of salinity tolerance, including inhabitants of hyperhaline reservoirs. Na+ content in Dunaliella cells inhabiting saline environments is maintained at a fairly low level, comparable to that in the cells of freshwater organisms. However, despite a long history of studying the physiological and molecular mechanisms that ensure the ability of halotolerant Dunaliella species to survive at high concentrations of NaCl, the question of how Dunaliella cells remove excess Na+ ions entering from the environment is still debatable. For thermodynamic reasons it should be a primary active mechanism; for example, via a Na+-transporting ATPase, but the molecular identification of Na+-transporting mechanism in Dunaliella has not yet been carried out. Formerly, in the euryhaline alga D. maritima, we functionally identified Na+-transporting P-type ATPase in experiments with plasma membrane (PM) vesicles which were isolated from this alga. Here we describe the cloning of two putative P-type ATPases from D. maritima, DmHA1 and DmHA2. Phylogenetic analysis showed that both ATPases belong to the clade of proton P-type ATPases, but the similarity between DmHA1 and DmHA2 is not high. The expression of DmHA1 and DmHA2 in D. maritima cells under hyperosmotic salt shock was studied by qRT-PCR. Expression of DmHA1 gene decreases and remains at a relatively low level during the response of D. maritima cells to hyperosmotic salt shock. In contrast, expression of DmHA2 increases under hyperosmotic salt shock. This indicates that DmHA2 is important for overcoming hyperosmotic salt stress by the algal cells and as an ATPase it is likely directly involved in transport of Na+ ions. We assume that it is the DmHA2 ATPase that represents the Na+-transporting ATPase.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 687
Author(s):  
José Abel Fernández Romero ◽  
María Gabriela Paglini ◽  
Christine Priano ◽  
Adolfina Koroch ◽  
Yoel Rodríguez ◽  
...  

Lectins are proteins with a remarkably high affinity and specificity for carbohydrates. Many organisms naturally produce them, including animals, plants, fungi, protists, bacteria, archaea, and viruses. The present report focuses on lectins produced by marine or freshwater organisms, in particular algae and cyanobacteria. We explore their structure, function, classification, and antimicrobial properties. Furthermore, we look at the expression of lectins in heterologous systems and the current research on the preclinical and clinical evaluation of these fascinating molecules. The further development of these molecules might positively impact human health, particularly the prevention or treatment of diseases caused by pathogens such as human immunodeficiency virus, influenza, and severe acute respiratory coronaviruses, among others.


Author(s):  
Wiktoria Rajewicz ◽  
Donato Romano ◽  
Joshua Cherian Varughese ◽  
Godfried Jansen Van Vuuren ◽  
Alexandre Campo ◽  
...  

AbstractFacing the threat of rapidly worsening water quality, there is an urgent need to develop novel approaches of monitoring its global supplies and early detection of environmental fluctuations. Global warming, urban growth and other factors have threatened not only the freshwater supply but also the well-being of many species inhabiting it. Traditionally, laboratory-based studies can be both time and money consuming and so, the development of a real-time, continuous monitoring method has proven necessary. The use of autonomous, self-actualizing entities became an efficient way of monitoring the environment. The Microbial Fuel Cells (MFC) will be investigated as an alternative energy source to allow for these entities to self-actualize. This concept has been improved with the use of various lifeforms in the role of biosensors in a structure called ”biohybrid” which we aim to develop further within the framework of project Robocoenosis relying on animal-robot interaction. We introduce a novel concept of a fully autonomous biohybrid agent with various lifeforms in the role of biosensors. Herein, we identify most promising organisms in the context of underwater robotics, among others Dreissena polymorpha, Anodonta cygnaea, Daphnia sp. and various algae. Special focus is placed on the ”ecosystem hacking” based on their interaction with the electronic parts. This project uses Austrian lakes of various trophic levels (Millstättersee, Hallstättersee and Neusiedlersee) as case studies and as a ”proof of concept”.


2021 ◽  
Vol 13 (22) ◽  
pp. 12840
Author(s):  
Anjar Tri Wibowo ◽  
Husna Nugrahapraja ◽  
Ruri Agung Wahyuono ◽  
Izzatul Islami ◽  
Muhammad Husain Haekal ◽  
...  

Plastic is one of the most abundant pollutants in the environment. As a result of natural physical processes, large plastic waste is degraded into microsized particles (<5 mm) called microplastics. Because of their size, abundance, and durability, microplastics are widely distributed in the environment, contaminating food and water intended for human consumption. The extent of microplastic contamination in the human body is still unclear because there are few studies concerning microplastic contamination in human specimens and, in most studies, data were collected from city dwellers. Despite having the fourth largest population and being the fourth largest plastic waste producer in the world and second largest plastic polluter in the ocean, there are currently no data with respect to microplastic exposure for the Indonesian population. Several studies have reported on microplastic contamination in seafood and freshwater organisms from Indonesia, and it is likely that microplastics have contaminated the gastrointestinal tracts of Indonesians. Using Raman spectroscopy, we detected microplastic contamination in 7 out of 11 analyzed stool samples collected from a farming community in the highland village of Pacet, East Java, Indonesia. Polypropylene (PP) was the most abundant and prevalent type of microplastic observed, and it was found in four of the positive samples with an average concentration of 10.19 microgram per gram of feces (µg/g). Microplastics were also detected at high concentrations in tempeh (soybean cake, a staple protein source for Indonesians), table salts, and toothpaste, which were regularly consumed and used by the study participants. PP was particularly high in table salts (2.6 µg/g) and toothpaste (15.42 µg/g), suggesting that these products might contribute to the gastrointestinal contamination in the studied population. This pilot study indicated microplastic contamination in the rural Indonesian population and in their daily consumables, demonstrating the far-reaching extent of microplastic pollution beyond urban areas.


2021 ◽  
Vol 56 (4) ◽  
pp. 710-720
Author(s):  
Carla Juliana Nin ◽  
Suzelei Rodgher

Ecosystems are subject to various stress factors, such as temperature rises due to climate changes and metal disposal. Thermal stress can amplify or mask the effects of metals on aquatic organisms. This study aims to carry out a systematic review on the effects of temperature rises due to climate changes on the toxicity of metals for freshwater organisms. Searches were made in different electronic databases and article selection was based on the following inclusion criteria: concordance with the question of a systematic review; publication in English, Spanish, and Portuguese between 1960 and 2020; and the use of standard methodology. Forty-three articles were included, which were classified with respect to the year and country of publication, test-organisms and metals studied, temperatures tested, and the effects observed. In 80% of the studies analyzed, a temperature rise was responsible for increasing the toxicity of metals for the aquatic organisms. The temperatures studied contemplated the temperature rise predicted by the Intergovernmental Panel for Climate Change at the end of the 21st century. Brazil stood out among the countries for having the greatest number of research studies in this area, although there is still the need for an increase in studies in tropical climate regions. Based on the literature review, it was shown that the metals most studied were copper and cadmium and the test-organisms most used in the research projects were fish. The information obtained from ecotoxicological studies is essential to predict the effects and prevent the risks associated with the metal contamination of aquatic ecosystems due to climate changes.


Author(s):  
О. Sherstoboeva ◽  
А. Krzyhanivsky ◽  
A. Kryzhko

The article presents an analysis of current domestic and world literature data on the use of microbiomethod in plant protection. It has been proven, that biological preparations based on different biotypes of entomopathogenic bacteria Bacillus thuringiensis, due to their high specificity to various insect species and harmlessness to adult bees, warm-blooded and freshwater organisms, remain at the forefront of integrated plant protection systems worldwide. Their amount is up to 95% of all bioinsecticides. Being natural elements of biocenoses, entomopathogenic microorganisms do not harm plants. Moreover, the introduction of a number of bacteria into the soil and on the surface of plants promotes the growth of crops and increase their yield.Given the economic non-competitiveness of bioinsecticides compared to chemical insecticides, their use in Integrated Pest Management (IPM) Systems is appropriate for the control of phytophages against which they are highly effective. The negative result of chemical insecticides is not only the pollution of the environment and products, but also the formation and spread of resistant races and pest populations. The higher cost of microbiomethod is justified by the lack of negative long-term effects of massive use of chemical insecticides.


Toxics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 256
Author(s):  
Manuela Piccardo ◽  
Marco Bertoli ◽  
Paolo Pastorino ◽  
Damià Barceló ◽  
Francesca Provenza ◽  
...  

Microplastics (MPs) pose biological and chemical hazards in aquatic and terrestrial food webs across the globe. Research on microplastic contamination has long focused on marine ecosystems, whereas the toxicological impact on freshwater organisms is still little explored. In this study, the lethal and sublethal response of the freshwater macroinvertebrate Hydropsyche pellucidula exposed to polypropylene MPs after different pre-conditioning treatments was assessed. Field samples were collected in a riverine system (Vipacco river; northeast Italy) to assess the characteristics of the MPs in the aquatic environment Both water and sediment were contaminated by MPs (3.73 ± 2.11 items m−3 per min and 3.33 ± 4.16 items dm−3, respectively). The chemical MPs composition included polystyrene, polyethylene terephthalate, polyurethane, polyamide, polypropylene, and polyethylene. Polypropylene (PP), although not the most abundant polymer recorded in the study area, was preferred over the other types according to its abundance in freshwater and H. pellucidula feeding behavior. A housing test was performed to recreate the natural conditions of larvae sampled for a reliable response to the ecotoxicological tests. The microplastics underwent either preconditioning with Vipacco River water (PP-river) and surfactant Triton X-100 (PP-sf) or no pre-treatment (PP). Submersion of microplastics in 10 µg L−1 of surfactant solution for 24 h was sufficient to induce consistent spectral changes and modify the chemical profile of the plastic surface. Mortality rate differed according to treatment: PP and PP-river > positive control > PP-sf > negative control. Integrated biomarker response (IBRv2) and analysis of oxidative stress biomarker levels showed a greater response of superoxide dismutase and lipid peroxidation (malondialdehyde) in larvae treated with PP conditioned in surfactant. Our findings enhance knowledge on the toxicity of PP and conditioning phases on H. pellucidula larvae.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li'ang Li ◽  
Ran Xu ◽  
Lingfeng Jiang ◽  
Elvis Genbo Xu ◽  
Man Wang ◽  
...  

Compared with marine organisms, research on microplastics (MPs) in freshwater organisms is still less although MPs have been widely found in the freshwater ecosystem. Hypoxia is a ubiquitous issue in freshwater aquaculture, and under such scenarios, the toxic effects of MPs on typical aquaculture fish need to be clarified. In this study, we studied the effects of MPs (polystyrene) on specific growth rate (SGR), hypoxia-inducible factor-1α (HIF-1α), tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interferon (IFN) in the yellow catfish (Pelteobagrus fulvidraco) under hypoxic conditions. After 15 days of exposure, the SGR was not affected by MPs or hypoxia. MPs significantly increased the expressions of HIF-1α and TNF-α but inhibited the expression of IFN at high concentration MPs under normoxia. However, hypoxia significantly inhibited the expression of IL-8 and TNF-α under high MP concentration and low MP concentration, respectively. In addition, MPs had significant concentration-dependent inhibitory effects on IFN under hypoxia. Surprisingly, a positive correction between HIF-1α and TNF-α was found in fish. Although hypoxia might alleviate the effects of MPs with low concentrations, the interaction of hypoxia and MPs aggravated the negative effects of MPs on immune factors at high concentration MPs. This study provided new insight into the complex effects of hypoxia and MPs on aquatic organisms, and future studies should focus on the cellular pathways of immune cells in fish. Given that MPs could induce the immune response in fish, considerations should be paid to the impacts of MPs on freshwater aquaculture, and hypoxia should be taken into consideration when evaluating the effects of MPs.


Sign in / Sign up

Export Citation Format

Share Document