prey mass
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 17 (7) ◽  
pp. 20210286
Author(s):  
Barbara Class ◽  
Giulia Masoero ◽  
Julien Terraube ◽  
Erkki Korpimäki

Food-hoarding behaviour is widespread in the animal kingdom and enables predictable access to food resources in unpredictable environments. Within species, consistent variation among individuals in food-hoarding behaviours may indicate the existence of individual strategies, as it likely captures intrinsic differences in how individuals cope with risks (e.g. starvation, pilferage). Using 17 years of data, we estimated the long-term repeatability of 10 food-hoarding behaviours in a population of Eurasian pygmy owls ( Glaucidium passerinum ), a small avian predator subject to high temporal fluctuations in its main prey abundance. We found low repeatability in the proportion of shrews and the average prey mass stored for both sexes, while females were moderately repeatable in the mass and the number of prey items stored. These two pairs of behaviours were tightly correlated among individuals and might represent two different sets of individual strategies to buffer against starvation risks.


2021 ◽  
Author(s):  
Jody C McKerral ◽  
Maria Kleshnina ◽  
Louise Bartle ◽  
James G Mitchell ◽  
Jerzy A Filar

Allometric settings of population dynamics models are appealing due to their parsimonious nature and broad utility when studying system level effects. Here, we parameterise the size-scaled Rosenzweig-Macarthur ODEs to eliminate prey-mass dependency. We define the functional response term to match experiments, and examine situations where metabolic theory derivations and observation diverge. We produce dynamics consistent with observation. Our parameterisation of the Rosenzweig-Macarthur system is an accurate minimal model across 15+ orders of mass magnitude.


2020 ◽  
Vol 10 (18) ◽  
pp. 9696-9706
Author(s):  
Ryan Walker ◽  
Shawn M. Wilder ◽  
Angélica L. González

2019 ◽  
Vol 166 (12) ◽  
Author(s):  
Yiou Zhu ◽  
Steven P. Newman ◽  
William D. K. Reid ◽  
Nicholas V. C. Polunin

Abstract Stable isotopes have provided important insight into the trophic structure and interaction in many ecosystems, but to date have scarcely been applied to the complex food webs of coral reefs. We sampled white muscle tissues from the fish species composing 80% of the biomass in the 4–512 g body mass range at Cape Eleuthera (the Bahamas) in order to examine isotopic niches characterised by δ13C and δ15N data and explore whether fish body size is a driver of trophic position based on δ15N. We found the planktivore isotopic niche was distinct from those of the other trophic guilds suggesting the unique isotopic baseline of pelagic production sources. Other trophic guilds showed some level of overlap among them especially in the δ13C value which is attributable to source omnivory. Surprising features of the isotopic niches included the benthivore Halichoeres pictus, herbivores Acanthurus coeruleus and Coryphopterus personatus and omnivore Thalassoma bifasciatum being close to the planktivore guild, while the piscivore Aulostomus maculatus came within the omnivore and herbivore ellipses. These characterisations contradicted the simple trophic categories normally assigned to these species. δ15N tended to increase with body mass in most species, and at community level, the linear δ15N–log2 body mass relationship pointing to a mean predator–prey mass ratio of 1047:1 and a relatively long food chain compared with studies in other aquatic systems. This first demonstration of a positive δ15N–body mass relationship in a coral reef fish community suggested that the Cape Eleuthera coral reef food web was likely supported by one main pathway and bigger reef fishes tended to feed at higher trophic position. Such finding is similar to other marine ecosystems (e.g. North Sea).


2018 ◽  
Vol 8 (11) ◽  
pp. 5752-5764 ◽  
Author(s):  
Monika K. Reczuga ◽  
Mariusz Lamentowicz ◽  
Matthieu Mulot ◽  
Edward A. D. Mitchell ◽  
Alexandre Buttler ◽  
...  

2018 ◽  
Author(s):  
Juan Carlos Villaseñor-Derbez

Numerous location-based diet studies have been published describing different aspects of invasive lionfish (Pterois volitans and Pterois miles) feeding ecology, but there has been no synthesis of their diet composition and feeding patterns across regional gradients. 8125 lionfish stomachs collected from 10 locations were analyzed to provide a generalized description of their feeding ecology at a regional scale and to compare their diet among locations. Our regional data indicate lionfish in the western Atlantic are opportunistic generalist carnivores that consume at least 167 vertebrate and invertebrate prey species across multiple trophic guilds, and carnivorous fish and shrimp prey that are not managed fishery species and not considered at risk of extinction by the International Union for Conservation of Nature disproportionately dominate their diet. Correlations between lionfish size and their diet composition indicate lionfish in the western Atlantic transition from a shrimp-dominated diet to a fish-dominated diet through ontogeny. Lionfish total length (TL) (mm) was found to predict mean prey mass per stomach (g) by the following equation mean prey mass = 0.0002 × TL^1.6391, which can be used to estimate prey biomass consumption from lionfish length-frequency data. Our locational comparisons indicate lionfish diet varies considerably among locations, even at the group (e.g., crab) and trophic guild levels. The Modified Index of Relative Importance developed specifically for this study, calculated as the frequency of prey a × the number of prey a, can be used in other diet studies to assess prey importance when prey mass data are not available. Researchers and managers can use the diet data presented in this study to make inference about lionfish feeding ecology in areas where their diet has yet to be described. These data can be used to guide research and monitoring efforts, and can be used in modeling exercises to simulate the potential effects of lionfish on marine food webs. Given the large variability in lionfish diet composition among locations, this study highlights the importance of continued location-based diet assessments to better inform local management activities.


2018 ◽  
Vol 66 (3) ◽  
pp. 228 ◽  
Author(s):  
Leonela Schwerdt ◽  
Gabriel Pompozzi ◽  
Ana Elena de Villalobos ◽  
Fernando Pérez-Miles

This is the first study about trophic traits of Grammostola vachoni, a threatened theraphosid spider endemic to the mountain systems of central Argentina. Four prey types were used in experiments: crickets, cockroaches, beetle larvae and adult beetles. Grammostola vachoni was observed to eat at a rate of about once every 11 days, with the mean total number of prey consumed per spider during the experimental period being 2.7. Latency to the first attack was similar for crickets, cockroaches and beetle larvae, but was shorter for adult beetles. Feeding time was significantly longer for crickets and beetle larvae. Mass gain was significantly different among prey types. Feeding effectiveness and ingestion rate were significantly higher for crickets. A significant positive correlation for feeding effectiveness and ingestion rate with prey mass and the initial spider mass was also found.


Sign in / Sign up

Export Citation Format

Share Document