anharmonic lattice
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 28)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
Shravan Godse ◽  
Yagyank Srivastava ◽  
Ankit Jain

Abstract The anharmonic phonon properties of type-I filled inorganic clathrates Ba8Ga16Ge30 and Sr8Ga16Ge30 are obtained from the first-principles calculations by considering the temperature-dependent sampling of the potential energy surface and quartic phonon renormalization. Owing to the weak binding of guest atoms with the host lattice, the obtained guest modes undergo strong renormalization with temperature and become stiffer by up to 50% at room temperature in Sr8Ga16Ge30. The calculated phonon frequencies and associated thermal mean squared displace- ments are comparable with experiments despite the on-centering of guest atoms at cage centers in both clathrates. Lattice thermal conductivities are obtained in the temperature range of 50- 300 K accounting for three-phonon scattering processes and multi-channel thermal transport. The contribution of coherent transport channel is significant at room temperature (13% and 22% in Ba8Ga16Ge30 and Sr8Ga16Ge30) but is insufficient to explain the experimentally observed glass-like thermal transport in Sr8Ga16Ge30.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Wei Wang ◽  
Lijun Wu ◽  
Junjie Li ◽  
Niraj Aryal ◽  
Xilian Jin ◽  
...  

AbstractIdentifying and understanding the mechanisms behind strong phonon–phonon scattering in condensed matter systems is critical to maximizing the efficiency of thermoelectric devices. To date, the leading method to address this has been to meticulously survey the full phonon dispersion of the material in order to isolate modes with anomalously large linewidth and temperature-dependence. Here we combine quantitative MeV ultrafast electron diffraction (UED) analysis with Monte Carlo based dynamic diffraction simulation and first-principles calculations to directly unveil the soft, anharmonic lattice distortions of model thermoelectric material SnSe. A small single-crystal sample is photoexcited with ultrafast optical pulses and the soft, anharmonic lattice distortions are isolated using MeV-UED as those associated with long relaxation time and large displacements. We reveal that these modes have interlayer shear strain character, induced mainly by c-axis atomic displacements, resulting in domain formation in the transient state. These findings provide an innovative approach to identify mechanisms for ultralow and anisotropic thermal conductivity and a promising route to optimizing thermoelectric devices.


2021 ◽  
Author(s):  
Gabriel Krenzer ◽  
Chang-Eun Kim ◽  
Kasper Tolborg ◽  
Benjamin Morgan ◽  
Aron Walsh

Superionic crystals reach an ionic conductivity comparable to liquid electrolytes following a superionic transition at high temperature. The physical mechanisms that lead to this behaviour remain poorly understood. It has been proposed that superionic transitions are accompanied by the breakdown of specific phonon modes linked to characteristic diffusion processes. Any changes in vibrational properties across the superionic transition may therefore provide insights into the underlying physics of this phenomenon. Here, we apply a combination of lattice dynamics and ab initio molecular dynamics to probe the vibrational properties of the archetypal superionic conductor Li3N. We assess harmonic, quasi-harmonic, and anharmonic descriptions of the phonons. The harmonic and quasi-harmonic models show no change in features across the superionic transition. The fully anharmonic model, however, exhibits a phonon breakdown for all modes above the superionic transition temperature. The implications for developing lattice-dynamics based descriptors for superionic conductors are discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lin Chen ◽  
Yitao Wang ◽  
Qi Zheng ◽  
Jing Feng

A sequence of (La1-xHox)3NbO7 solid solutions were fabricated in this work, which were studied as candidate for thermal insulation materials. The lattices were identified via XRD, when SEM and EDS were used to characterize the microstructures and element distributions. The results showed that the highest modulus, hardness, and toughness of (La1-xHox)3NbO7 were 196 GPa, 9.2 GPa, and 1.6 MPa m1/2, respectively, and they accorded with the mechanical property requirements. Also, a low thermal conductivity (1.06 W m−1 K−1) and high thermal expansion coefficients (TECs: 11.3 × 10−6 K−1) were simultaneously realized in (La3/6Ho3/6)3NbO7, at high temperatures. No phase transition was detected up to 1,200°C, which proved their good high-temperature lattice stability. The intense anharmonic lattice vibrations might contribute to the outstanding thermal properties of (La1-xHox)3NbO7 ceramics. The suitable modulus, high hardness, low thermal conductivity, and high TECs of (La1-xHox)3NbO7 solid solutions proclaimed that they were exceptional thermal insulation ceramics.


Author(s):  
Gabriel Krenzer ◽  
Chang Eun Kim ◽  
Kasper Tolborg ◽  
Benjamin Morgan ◽  
Aron Walsh

Superionic crystals reach an ionic conductivity comparable to liquid electrolytes following a superionic transition at high temperature. The physical mechanisms that lead to this behaviour remain poorly understood. It has...


Sign in / Sign up

Export Citation Format

Share Document