growth assay
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 56)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 365-372
Author(s):  
Chunhong Song ◽  
Juan Zhen ◽  
Aihua Gong ◽  
Longying Zhang

Background: The Cripto-1 (CR-1)/glucose-regulated protein 78 (GRP78) complex was involved in enhancing survival in different types of cells. CR-1 presented increased levels in ovarian carcinoma tissue. However, the potential mechanism of CR-1/GRP78 was unclear in ovarian cancer. Thus, the study aimed to analyze the role of CR-1/GRP78 in ovarian carcinoma cells. Methods and materials: The CR-1 and GRP78 expression in different ovarian cancer cell lines were detected by RT-qPCR and Western blot (WB). Immunoprecipitation assay was performed to analyze whether Cripto-1 interacted with GRP78. The CR-1 interfering plasmids or GRP-78 overexpressing plasmids transfected into cells were used to decrease endogenous CR-1 levels and increase GRP-78 levels. Cell clonogenicity and proliferation capabilities were separately evaluated by clone growth assay, along with the detection of cell migration and invasion abilities by transwell and wound healing assay. In addition, Matrix Metalloproteinases (MMPs) levels were detected by WB. The cell apoptosis was analyzed by Flow Cytometer and the detection of apoptosis-related proteins. Results: The results showed that CR-1 and GRP78 levels were higher in SKOV3 than other cell lines. Furthermore, CR-1 interacted with GRP78 in cells, which formed protein complex. CR-1 silence significantly decreased GRP-78 levels. Moreover, GRP78 overexpression blocked the anti-survival effects caused by CR-1 knockdown. Conclusion: CR-1 silence inhibited cell proliferation and promoted apoptosis via GRP78. It replied that GRP-78 overexpression might enhance the biological functions of CR-1/GRP78 complex ameliorated by CR-1 silence. Thus, CR-1/GRP78 could be a potential target for treating ovarian carcinoma.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 121
Author(s):  
Daria Augustyniak ◽  
Tomasz Olszak ◽  
Zuzanna Drulis-Kawa

Outer membrane vesicles (OMVs) released from gram-negative bacteria are key elements in bacterial physiology, pathogenesis, and defence. In this study, we investigated the role of Pseudomonas aeruginosa OMVs in the anti-phage defence as well as in the potential sensitization to LPS-specific phages. Using transmission electron microscopy, virion infectivity, and neutralization assays, we have shown that both phages efficiently absorb on free vesicles and are unable to infect P. aeruginosa host. Nevertheless, the accompanying decrease in PFU titre (neutralization) was only observed for myovirus KT28 but not podovirus LUZ7. Next, we verified whether OMVs derived from wild-type PAO1 strain can sensitize the LPS-deficient mutant (Δwbpl PAO1) resistant to tested phages. The flow cytometry experiments proved a quite effective and comparable association of OMVs to Δwbpl PAO1 and wild-type PAO1; however, the growth kinetic curves and one-step growth assay revealed no sensitization event of the OMV-associated phage-resistant P. aeruginosa deletant to LPS-specific phages. Our findings for the first time identify naturally formed OMVs as important players in passive resistance (protection) of P. aeruginosa population to phages, but we disproved the hypothesis of transferring phage receptors to make resistant strains susceptible to LPS-dependent phages.


2021 ◽  
Vol 948 (1) ◽  
pp. 012026
Author(s):  
A A Ghozali ◽  
D Iswantini ◽  
C Kusmana ◽  
N Nurhidayat

Abstract Five polyaromatic hydrocarbons (PAHs) degrading bacterial species had been isolated from crude oil samples. All bacteria were positive Gram-stained, except one; and had positive results on the catalase test. After sequencing bacterial DNA, three bacterial genera were obtained with 99-100% certainty, namely: Pseudomonas sp., Staphylococcus sp., and Bacillus sp. All bacteria were known strongly to form a biofilm, thus can be applied for biosensing and/or bioremediation techniques. Using minimal mineral media growth assay as media culture, all bacteria were able to degrade naphthalene and anthracene, Staphylococcus sp. shown the strong degradation affinity. Meanwhile, Bacillus sp. tended to form strong biofilm. Electrochemical data were obtained with the cyclic voltammetry method, with a scan rate of 100 mV/s. Voltammogram profiles of all bacteria against simple benzene compounds (benzene, toluene, and xylene; concentration for each compound 1μL/mL) showed irreversible oxidation peaks at 0.20-0.40 V ppm of the analyte, producing current 50-100 μA. The measurements were taken when the solution was more stable (±10 seconds) after vigorous shaking to homogenize benzene compounds and introducing O2 into the solution. The peaks were decreasing over the next cycles, indicating the lower bioavailability of benzene compounds to be degraded with O2.


2021 ◽  
Vol Volume 14 ◽  
pp. 4611-4617
Author(s):  
Hao Tang ◽  
Rongrong Li ◽  
Huaming Xu ◽  
Guoping Lu ◽  
Zhen Liu ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1803
Author(s):  
Evgeny A. Idelevich ◽  
Ilka D. Nix ◽  
Janika A. Busch ◽  
Katrin Sparbier ◽  
Oliver Drews ◽  
...  

Accelerating antimicrobial susceptibility testing (AST) is a priority in the development of novel microbiological methods. The MALDI-TOF MS-based direct-on-target microdroplet growth assay (DOT-MGA) has recently been described as a rapid phenotypic AST method. In this proof-of-principle study, we expanded this method to simultaneously test 24 antimicrobials. An Enterobacterales panel was designed and evaluated using 24 clinical isolates. Either one or two (only for antimicrobials with the EUCAST “I” category) breakpoint concentrations were tested. Microdroplets containing bacterial suspensions with antimicrobials and growth controls were incubated directly on the spots of a disposable MALDI target inside a humidity chamber for 6, 8 or 18 h. Broth microdilution was used as the standard method. After 6 and 8 h of incubation, the testing was valid (i.e., growth control was successfully detected) for all isolates and the overall categorical agreement was 92.0% and 92.7%, respectively. Although the overall assay performance applying short incubation times is promising, the lower performance with some antimicrobials and when using the standard incubation time of 18 h indicates the need for thorough standardization of assay conditions. While using “homebrew” utensils and provisional evaluation algorithms here, technical solutions such as dedicated incubation chambers, tools for broth removal and improved software analyses are needed.


Author(s):  
Nusrat Perween ◽  
Komal Pekhale ◽  
Gauri Haval ◽  
Smriti Mittal ◽  
Surendra Ghaskadbi ◽  
...  

Abstract Thioredoxins, small disulphide-containing redox proteins, play an important role in the regulation of cellular thiol redox balance through their disulfide reductase activity. In this study, we have identified, cloned, purified and characterized thioredoxin 1 (HvTrx1) from the Cnidarian Hydra vulgaris Ind-Pune. Bioinformatics analysis revealed that HvTrx1 contains an evolutionarily conserved catalytic active site CGPC and shows a closer phylogenetic relationship with vertebrate Trx1. Optimum pH and temperature for enzyme activity of purified HvTrx1 was found to be pH 7.0 and 25 °C respectively. Enzyme activity decreased significantly at acidic or alkaline pH as well as at higher temperatures. HvTrx1 was found to be expressed ubiquitously in whole mount in situ hybridization. Treatment of Hydra with hydrogen peroxide (H2O2), a highly reactive oxidizing agent, led to a significant increase in gene expression and enzyme activity of Trx1. Further experiments using PX12, an inhibitor of Trx1, indicated that Trx1 plays an important role in regeneration in Hydra. Finally, by using growth assay in E. coli and wound healing assay in human colon cancer cells, we demonstrate that HvTrx1 is functionally active in both prokaryotic and eukaryotic heterologous systems.


Author(s):  
Jiangqing Huang ◽  
Shengcen Zhang ◽  
Zhichang Zhao ◽  
Min Chen ◽  
Yingping Cao ◽  
...  

The emergence and prevalence of carbapenem-resistant Enterobacteriaceae (CRE) have drawn worldwide attention. Ceftazidime/avibactam (CAZ/AVI) gives us a valuable alternative strategy to treat CRE infections. Unfortunately, CAZ/AVI resistance could occur during CAZ/AVI treatment. The CAZ/AVI-resistant Carbapenem-resistant Klebsiella pneumoniae (CR-KP) (KP137060) and earlier CAZ/AVI-susceptible isolate (KP135194) from the same hospitalized patient were collected at Fujian Medical University Union Hospital between October and November 2019. In this study, CAZ/AVI MICs of CAZ/AVI-susceptible and -resistant isolates (KP135194 and KP137060) were 4 mg/L and 128 mg/L, respectively; and the two isolates had the same antibiotic resistance pattern to other carbapenems. Two strains were then submitted for whole-genome sequencing and bioinformatic analysis. ompK36 was not detected in two isolates. No mutation was observed in blaKPC-2, ompK35 and ompK37 in this study and there was no significant difference of the expression in blaKPC-2, ompK35 and ompK37 between the two isolates (p>0.05). Two isolates were sequence type 11 and harbored blaKPC-2, blaSHV-182 and blaTEM-1B. Compared with KP135194, KP137060 harbored an additional blaNDM-5 positive plasmid. blaNDM-5 gene could be successfully transferred into E. coli J53 at a conjugation frequency of 1.14×10-4. Plasmid stability testing showed that blaKPC-2- and blaNDM-5-harboring plasmids were still stably maintained in the hosts. Growth assay and growth competition experiments showed there was no significant difference in fitness cost between two CR-KP isolates. Our study described the acquisition of a blaNDM-5-harboring plasmid leading to resistance to ceftazidime/avibactam in KPC-2-producing Klebsiella pneumoniae during treatment. This phenomenon deserves further exploration.


2021 ◽  
Author(s):  
Jesus Hernandez ◽  
Kevin D. Ross ◽  
Bruce A. Hamilton

The yeast two-hybrid (Y2H) assay has long been used to identify new protein-protein interaction pairs and to compare relative interaction strengths. Traditional Y2H formats may be limited, however, by use of constitutive strong promoters if expressed proteins have toxic effects or post-transcriptional expression differences in yeast among a comparison group. As a step toward more quantitative Y2H assays, we modified a common vector to use an inducible CUP1 promoter, which showed quantitative induction of several "bait" proteins with increasing copper concentration. Using mouse Nxf1 (homologous to yeast Mex67p) as a model bait, copper titration achieved levels that bracket levels obtained with the constitutive ADH1 promoter. Using a liquid growth assay for an auxotrophic reporter in multiwell plates allowed log-phase growth rate to be used as a measure of interaction strength. These data demonstrate the potential for quantitative comparisons of protein-protein interactions using the Y2H system.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Kexin Yan ◽  
Daniel J. Rawle ◽  
Thuy T. Le ◽  
Andreas Suhrbier

Abstract Background The international SARS-CoV-2 pandemic has resulted in an urgent need to identify new anti-viral drugs for treatment of COVID-19. The initial step to identifying potential candidates usually involves in vitro screening that includes standard cytotoxicity controls. Under-appreciated is that viable, but stressed or otherwise compromised cells, can also have a reduced capacity to replicate virus. A refinement proposed herein for in vitro drug screening thus includes a simple growth assay to identify drug concentrations that cause cellular stress or “cytomorbidity”, as distinct from cytotoxicity or loss of viability. Methods A simple rapid bioassay is presented for antiviral drug screening using Vero E6 cells and inhibition of SARS-CoV-2 induced cytopathic effects (CPE) measured using crystal violet staining. We use high cell density for cytotoxicity assays, and low cell density for cytomorbidity assays. Results The assay clearly illustrated the anti-viral activity of remdesivir, a drug known to inhibit SARS-CoV-2 replication. In contrast, nitazoxanide, oleuropein, cyclosporine A and ribavirin all showed no ability to inhibit SARS-CoV-2 CPE. Hydroxychloroquine, cyclohexamide, didemnin B, γ-mangostin and linoleic acid were all able to inhibit viral CPE at concentrations that did not induce cytotoxicity. However, these drugs inhibited CPE at concentrations that induced cytomorbidity, indicating non-specific anti-viral activity. Conclusions We describe the methodology for a simple in vitro drug screening assay that identifies potential anti-viral drugs via their ability to inhibit SARS-CoV-2-induced CPE. The additional growth assay illustrated how several drugs display anti-viral activity at concentrations that induce cytomorbidity. For instance, hydroxychloroquine showed anti-viral activity at concentrations that slow cell growth, arguing that its purported in vitro anti-viral activity arises from non-specific impairment of cellular activities. The cytomorbidity assay can therefore rapidly exclude potential false positives.


Sign in / Sign up

Export Citation Format

Share Document