velocity distribution
Recently Published Documents


TOTAL DOCUMENTS

3379
(FIVE YEARS 442)

H-INDEX

77
(FIVE YEARS 7)

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 35
Author(s):  
Ming Teng ◽  
Ugo Piomelli

The development of secondary instabilities in a boundary layer over a backward-facing step is investigated numerically. Two step heights are considered, h/δo*=0.5 and 1.0 (where δo* is the displacement thickness at the step location), in addition to a reference flat-plate case. A case with a realistic freestream-velocity distribution is also examined. A controlled K-type transition is initiated using a narrow ribbon upstream of the step, which generates small and monochromatic perturbations by periodic blowing and suction. A well-resolved direct numerical simulation is performed. The step height and the imposed freestream-velocity distribution exert a significant influence on the transition process. The results for the h/δo*=1.0 case exhibit a rapid transition primarily due to the Kelvin–Helmholtz instability downstream of step; non-linear interactions already occur within the recirculation region, and the initial symmetry and periodicity of the flow are lost by the middle stage of transition. In contrast, case h/δo*=0.5 presents a transition road map in which transition occurs far downstream of the step, and the flow remains spatially symmetric and temporally periodic until the late stage of transition. A realistic freestream-velocity distribution (which induces an adverse pressure gradient) advances the onset of transition to turbulence, but does not fundamentally modify the flow features observed in the zero-pressure gradient case. Considering the budgets of the perturbation kinetic energy, both the step and the induced pressure-gradient increase, rather than modify, the energy transfer.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 422
Author(s):  
Bin Liu ◽  
Shengqiang Shi ◽  
Yongshan Liu ◽  
Rachid Bennacer ◽  
Aiqiang Chen ◽  
...  

The performance of the air-cooler in refrigeration systems plays a key role in their energy efficiency. Here, the plenum-chamber coefficient was defined to investigate a possible way of enhancing the refrigeration coefficient that reflects the efficiency of the system. To investigate the influence of the plenum-chamber coefficient on the frosting and the cooling system of the air-cooler, three plenum-chamber coefficients (0.74, 0.97, 1.2) were studied under two different relative humidities. The temperature decreasing curve of the environmental chamber, the velocity distribution of the air-cooler, and the frost accumulation under and on the air-cooler were analyzed. We find that the homogeneity of the velocity distribution of the air-cooler and the frost accumulation increase with a growing plenum-chamber coefficient, while the frost accumulation on the fin will first increase and then decrease with the increase in the plenum-chamber coefficient. In general, frosting is more present when the plenum-chamber coefficient is 0.97.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Ximin Deng ◽  
Haijun Wu ◽  
Xiang Yang ◽  
Wenhui Xie ◽  
Fenglei Huang

2021 ◽  
Author(s):  
Azad Hussain ◽  
Muhammad Arsaln ◽  
Ali Hassan ◽  
Aysha Rehman

Abstract This paper investigates time-dependent compressible steam laminar flow coupled with heat transfer in fluids in a squared cylinder. The present problem has been designed in COMSOL-Multiphysics. The laminar flow is selected keeping the Mac number low. The flow possesses a no-slip condition with the wall of geometry. The pressure kept on flow is 0 Pas and the temperature of the flow regime is 305.13. The flow is initiated with a velocity of 0.5m/s. The effects of time on velocity distribution and pressure distribution are described with the help of graphs. Different results like drag coefficient, lift coefficient, heat distributions are also discussed. The technique used to solve modeled problem is BDF.


Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Stefano Savino ◽  
Carlo Nonino

Counter-flow double-layered microchannel heat sinks are very effective for thermal control of electronic components; however, they require rather complicated headers and flow maldistribution can also play a negative role. The cross-flow configuration allows a much simpler header design and the thermal performance becomes similar to that provided by the counter-flow arrangement if the velocity distribution in the microchannels is not uniform. The aim of this work is to show the possibility of achieving a favorable flow distribution in the microchannels of a cross-flow double-layered heat sink with an adequate header design and the aid of additional elements such as full or partial height baffles made of solid or porous materials. Turbulent RANS numerical simulations of the flow field in headers are carried out with the commercial code ANSYS Fluent. The flow in the microchannel layers is modeled as that in a porous material, whose properties are derived from pressure drop data obtained using an in-house FEM code. It is demonstrated that, with an appropriate baffle selection, inlet headers of cross-flow microchannel heat sinks yield velocity distributions very close to those that would allow optimal hotspot management in electronic devices.


Author(s):  
Zhixing Mei ◽  
Qiangwei Cai ◽  
Jing Ye ◽  
Yan Li ◽  
Bojing Zhu

Extreme ultraviolet (EUV) disturbances are ubiquitous during eruptive phenomena like solar flare and Coronal Mass Ejection (CME). In this work, we have performed a three-dimensional (3D) magnetohydrodynamic numerical simulation of CME with an analytic magnetic fluxrope (MFR) to study the complex velocity distribution associated with EUV disturbances. When the MFR erupts upward, a fast shock (FS) appears as a 3D dome, followed by outward moving plasma. In the center of the eruptive source region, an expanding CME bubble and a current sheet continuously grow, both of which are filled by inward moving plasma. At the flanks of the CME bubble, a complex velocity distribution forms because of the dynamical interaction between inward and outward plasma, leading to the formation of slow shock (SS) and velocity separatrix (VS). We note two types of vortices near the VS, not mentioned in the preceding EUV disturbance simulations. In first type of vortex, the plasma converges toward the vortex center, and in the second type, the plasma spreads out from the center. The forward modeling method has been used to create the synthetic SDO/AIA images, in which the eruptive MFR and the FS appear as bright structures. Furthermore, we also deduce the plasma velocity field by utilizing the Fourier local correlation tracking method on the synthetic images. However, we do not observe the VS, the SS, and the two types of vortices in this deduced velocity field.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2288
Author(s):  
Jie Kou ◽  
Zhaoming Jiang ◽  
Yiying Cong

An innovative axial hydrocyclone separator was designed in which a guide vane was installed to replace a conventional tangential inlet, potentially aggravating inlet turbulence. The characteristics of velocity distribution, concentration distribution, and pressure distribution inside the separator were obtained through the numerical simulation of the turbulent flow of oil and water. The results showed that the flow field presented good symmetry, which eliminated the eccentric turbulence phenomenon in the conventional hydrocyclone separators and was beneficial for the oil–water separation.


Author(s):  
Matthew Klimek

Abstract We propose the study of the time substructure of jets, motivated by the fact that the next generation of detectors at particle colliders will resolve the time scale over which jet constituents arrive. This effect is directly related to the fragmentation and hadronization process, which transforms partons into massive hadrons with a distribution of velocities. We review the basic predictions for the velocity distribution of jet hadrons, and suggest an application for this information in the context of boosted object tagging. By noting that the velocity distribution is determined by the properties of the color string which ends on the parton that initiates the jet, we observe that jets originating from boosted color singlets, such as Standard Model electroweak bosons, will exhibit velocity distributions that are boosted relative to QCD jets of similar jet energy. We find that by performing a simple cut on the corresponding distribution of charged hadron arrival times at the detector, we can discriminate against QCD jets that would otherwise give a false positive under a traditional spatial substructure based boosted object tagger.


Sign in / Sign up

Export Citation Format

Share Document