information bottleneck
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 156)

H-INDEX

20
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Αθανάσιος Δαββέτας

Τα τελευταία χρόνια, η διαδικασία συλλογής ολοένα και περισσότερων δεδομένων έχει ως αποτέλεσμα την ύπαρξη πληθώρας δεδομένων. Μετά τη διερεύνηση αποτελεσματικών τρόπων αποθήκευσης, διαχείρισης και συλλογής δεδομένων μεγάλης κλίμακας ή ποικίλων τύπων, το ερευνητικό ενδιαφέρον της επιστημονικής κοινότητας μετατοπίστηκε στην εξαγωγή πληροφορίας από τέτοιου είδους συλλογές. Η βαθιά μάθηση (deep learning) χρησιμοποιείται συχνά για τη διαδικασία εξαγωγής πολύτιμης πληροφορίας. Οι μέθοδοι βαθιάς μάθησης ευδοκιμούν με σύνολα δεδομένων μεγάλης κλίμακας, λόγω της ικανότητάς τους να μαθαίνουν εναλλακτικές αναπαραστάσεις από ακατέργαστες παρατηρήσεις. Η διαθέσιμη πληθώρα δεδομένων επιτρέπει την εκμάθηση γενικευμένων αναπαραστάσεων. Με τη σειρά τους, οι γενικευμένες αναπαραστάσεις επιτρέπουν την αποτελεσματική εκμάθηση πολύπλοκων εργασιών. Παρά τις επιτυχείς προσπάθειες για την εξαγωγή πληροφοριών από μεμονωμένες πηγές δεδομένων ή τύπους δεδομένων, η αντιμετώπιση πολλαπλών διαφορετικών πηγών δεδομένων παραμένει ένα ανοιχτό ερώτημα στην επιστημονική κοινότητα. Η εκμάθηση αναπαραστάσεων (representation learning) επιτρέπει τον συνδυασμό και την αντιπαράθεση πολλαπλών διαφορετικών πηγών δεδομένων σε έναν χώρο κοινό, ουσιαστικό και χαμηλότερων διαστάσεων. Ωστόσο, τα τυπικά πλαίσια μάθησης για κοινή εκμάθηση αναπαραστάσεων (joint representation learning) πρέπει να αντιμετωπίσουν μια πληθώρα προκλήσεων. Αρχικά, οι αρχιτεκτονικές αποφάσεις των εμπλεκόμενων νευρωνικών δικτύων είναι συχνά προϊόντα προερχόμενα από διαδικασίες ή αποφάσεις που εμπλέκουν ανθρώπινη παρέμβαση (μη αυτόματες). Οι συγκεκριμένες διαδικασίες ή αποφάσεις συνήθως αφορούν συγκεκριμένες εφαρμογές και σπάνια γενικεύονται σε πολλαπλούς τομείς ή εργασίες. Ταυτόχρονα, η απευθείας σύνδεση πηγών δεδομένων στα επίπεδα εισόδου του νευρωνικού δικτύου εισάγει μια προσδοκία σταθερής διαθεσιμότητας. Ωστόσο, σε πραγματικές εφαρμογές, η προσδοκία διαθεσιμότητας όλων των πηγών δεδομένων δεν είναι ρεαλιστική. Επιπλέον, η επίδοση των τυπικών πλαισίων μάθησης μπορεί να μειωθεί κατά τη χρήση περιττών ή μη συμπληρωματικών πηγών δεδομένων. Η αντιμετώπιση μια τέτοιας συμπεριφοράς, επίσης απαιτεί τη χρήση μη-αυτόματων διαδικασιών. Η χειρωνακτική εργασία που καταβάλλεται, σκοπεύει στη δημιουργία συγκεκριμένων υποθέσεων ή κανόνων που θα διασφαλίζουν τη σταθερότητα ή στην κατανόηση των περίπλοκων σχέσεων μεταξύ των πηγών δεδομένων, προκειμένου να αποφευχθούν οι μη συμπληρωματικές σχέσεις. Σε αυτή τη διατριβή, διερευνάται η υπόθεση ότι η χρήση εξωτερικών δεδομένων βελτιώνει την εκμάθηση αναπαραστάσεων. Η παραπάνω έρευνα καταλήγει στην πρόταση μιας μεθόδου εκμάθησης αναπαραστάσεων, που ονομάζεται Evidence Transfer (EviTraN). Η EviTraN είναι ένα ευέλικτο και αυτοματοποιημένο σχήμα σύντηξης πληροφορίας (information fusion) που βασίζεται στην εκμάθηση αναπαραστάσεων, τη μεταφορά μάθησης (transfer learning) και την υβριδική μοντελοποίηση (hybrid modelling). Επιπλέον, προτείνεται μια σειρά κριτηρίων αξιολόγησης για την εκμάθηση αναπαραστάσεων για τους σκοπούς της σύντηξης πληροφοριών. Ακόμα, η διατριβή περιλαμβάνει μια θεωρητική ερμηνεία της παραπάνω μεθόδου, βασισμένη στη σύγκριση με τη μέθοδο Information Bottleneck, η οποία αποτελεί θεμέλιο λίθο για επεξηγηματική μοντελοποίηση και ανοιχτή επιστήμη. Η διαδικασία αξιολόγησης της EviTraN περιλαμβάνει επίσης ένα ρεαλιστικό σενάριο ανίχνευσης έντονων καιρικών συνθηκών χωρίς επίβλεψη, αποδεικνύοντας έτσι τον αντίκτυπό της, καθώς και την πιθανή χρήση της σε πρόσθετες πραγματικές εφαρμογές. Η πειραματική αξιολόγηση με τεχνητά παραγόμενες, καθώς και ρεαλιστικές πηγές πληροφορίας υποδηλώνει ότι η EviTraN είναι μια σταθερή και αποτελεσματική μέθοδος. Επιπλέον, είναι ευέλικτη, καθώς επιτρέπει την εισαγωγή ποικίλων σχέσεων, συμπεριλαμβανομένων των μη συμπληρωματικών. Ακόμα, λόγω της διαδικασίας εκμάθησής της που βασίζεται στη μεταφορά εκμάθησης (transfer learning), είναι ένα αρθρωτό σχήμα σύντηξης που δεν απαιτεί να υπάρχουν όλες οι πηγές δεδομένων κατά την εξαγωγή συμπερασμάτων (μόνο δεδομένα που ανήκουν στην κύρια συλλογή δεδομένων).


Author(s):  
Adam Gordon Kline ◽  
Stephanie Palmer

Abstract The renormalization group (RG) is a class of theoretical techniques used to explain the collective physics of interacting, many-body systems. It has been suggested that the RG formalism may be useful in finding and interpreting emergent low-dimensional structure in complex systems outside of the traditional physics context, such as in biology or computer science. In such contexts, one common dimensionality-reduction framework already in use is information bottleneck (IB), in which the goal is to compress an ``input'' signal X while maximizing its mutual information with some stochastic ``relevance'' variable Y. IB has been applied in the vertebrate and invertebrate processing systems to characterize optimal encoding of the future motion of the external world. Other recent work has shown that the RG scheme for the dimer model could be ``discovered'' by a neural network attempting to solve an IB-like problem. This manuscript explores whether IB and any existing formulation of RG are formally equivalent. A class of soft-cutoff non-perturbative RG techniques are defined by families of non-deterministic coarsening maps, and hence can be formally mapped onto IB, and vice versa. For concreteness, this discussion is limited entirely to Gaussian statistics (GIB), for which IB has exact, closed-form solutions. Under this constraint, GIB has a semigroup structure, in which successive transformations remain IB-optimal. Further, the RG cutoff scheme associated with GIB can be identified. Our results suggest that IB can be used to impose a notion of ``large scale'' structure, such as biological function, on an RG procedure.


NeuroImage ◽  
2021 ◽  
Vol 243 ◽  
pp. 118569
Author(s):  
Lianrui Zuo ◽  
Blake E. Dewey ◽  
Yihao Liu ◽  
Yufan He ◽  
Scott D. Newsome ◽  
...  

2021 ◽  
Author(s):  
Haitao Mao ◽  
Xu Chen ◽  
Qiang Fu ◽  
Lun Du ◽  
Shi Han ◽  
...  

2021 ◽  
Author(s):  
Morten Ostergaard Nielsen ◽  
Jan Ostergaard ◽  
Jesper Jensen ◽  
Zheng-Hua Tan

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1360
Author(s):  
Xin Du ◽  
Katayoun Farrahi ◽  
Mahesan Niranjan

In solving challenging pattern recognition problems, deep neural networks have shown excellent performance by forming powerful mappings between inputs and targets, learning representations (features) and making subsequent predictions. A recent tool to help understand how representations are formed is based on observing the dynamics of learning on an information plane using mutual information, linking the input to the representation (I(X;T)) and the representation to the target (I(T;Y)). In this paper, we use an information theoretical approach to understand how Cascade Learning (CL), a method to train deep neural networks layer-by-layer, learns representations, as CL has shown comparable results while saving computation and memory costs. We observe that performance is not linked to information–compression, which differs from observation on End-to-End (E2E) learning. Additionally, CL can inherit information about targets, and gradually specialise extracted features layer-by-layer. We evaluate this effect by proposing an information transition ratio, I(T;Y)/I(X;T), and show that it can serve as a useful heuristic in setting the depth of a neural network that achieves satisfactory accuracy of classification.


Sign in / Sign up

Export Citation Format

Share Document