gel shift assay
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 8)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 22 (3) ◽  
pp. 1289
Author(s):  
Elisa Gnodi ◽  
Clara Mancuso ◽  
Luca Elli ◽  
Elisa Ballarini ◽  
Raffaella Meneveri ◽  
...  

Celiac disease (CD) is an autoimmune enteropathy arising in genetically predisposed subjects exposed to gluten, which activates both innate and adaptive immunity. Although the pathogenesis is common to all patients, the clinical spectrum is quite variable, and differences could be explained by gene expression variations. Among the factors able to affect gene expression, there are lncRNAs. We evaluated the expression profile of 87 lncRNAs in CD vs. healthy control (HC) intestinal biopsies by RT-qPCR array. Nuclear enriched abundant transcript 1 (NEAT1) and taurine upregulated gene 1 (TUG1) were detected as downregulated in CD patients at diagnosis, but their expression increased in biopsies of patients on a gluten-free diet (GFD) exposed to gluten. The increase in NEAT1 expression after gluten exposure was mediated by IL-15 and STAT3 activation and binding to the NEAT1 promoter, as demonstrated by gel shift assay. NEAT1 is localized in the nucleus and can regulate gene expression by sequestering transcription factors, and it has been implicated in immune regulation and control of cell proliferation. The demonstration of its regulation by gluten thus also supports the role of lncRNAs in CD and prompts further research on these RNAs as gene expression regulators.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Boris Popov ◽  
Nikolai Petrov ◽  
Vladimir Ryabov ◽  
Igor Evsyukov

An effective regulation of quiescence plays a key role in the differentiation, plasticity, and prevention of stem cells from becoming malignant. The state of quiescence is being controlled by the pRb family proteins which show overlapping functions in cell cycle regulation; however, their roles in controlling the proliferation of mesenchymal stem cells (MSCs) remain to be understood. This study investigated the regulation of transient quiescence using growth curves, proliferation assay, the cytometric evaluation of cell cycle, Western blotting, and the electromobility gel shift assay (EMSA) on synchronized MSCs of the C3H10Т1/2 and control cells with different statuses of pRb proteins. It has been found that functional steady-state level of p130 but not pRb plays a critical role for entering, exiting, and maintenance of transient quiescence in multipotent mesenchymal stem cells.


2020 ◽  
Vol 21 (7) ◽  
pp. 587-595
Author(s):  
B. Bharath ◽  
Santanu Sasidharan ◽  
Sai K. Bhamidipati ◽  
Prakash Saudagar

Objective: The current study reports a green, rapid and one-pot synthesis of FeSO4 nanoparticles using Hibiscus rosasinensis floral extract as a reducing and capping agent. 0.5M of FeSO4 was stirred with the floral extract of H. rosasinensis for around 20 minutes at 37ºC and pH 7. Methods: The development of pink color was considered as the endpoint of reduction and the nanoparticles were characterized by UV-Vis spectrum, EDAX, DLS, FTIR, FESEM, and XRD. UV-Vis spectral analysis indicated a peak at 530 nm and EDAX measurement revealed the presence of Fe, S, O and C elements in the nanoparticle sample. The FTIR analysis showed amines, alcohol and alkene groups that act as capping agents for the produced nanoparticles. FESEM and XRD determination presented FeSO4 nanoparticles of 40-60 nm in size. The synthesized nanoparticles were found to have antibacterial activity against 6 pathogenic bacteria with MIC and MBC of 40 mg/mL. Results: To determine the toxicity at the eukaryotic level, brine shrimp toxicity assay was conducted and 100% mortality was found at concentrations >0.06 mg/mL. Gel shift assay suggested the mechanism of toxicity of FeSO4 NPs by binding and degradation of DNA molecules. Conclusion: From the results, the authors demonstrate the ease of green synthesis of FeSO4 nanoparticles and its bioactivity that may have potential applications as drugs and drug delivery systems against various diseases.


2020 ◽  
Author(s):  
Narendra Kumar ◽  
Mason Gray ◽  
Juan C. Ortiz-Marquez ◽  
Andrew Weber ◽  
Cameron R. Desmond ◽  
...  

AbstractHuman carbonic anhydrase 1 (CA1) has been suggested as a biomarker for identification of several diseases including cancers, pancreatitis, diabetes, and Sjogren’s syndrome. However, the lack of a rapid, cheap, accurate, and easy-to-use quantification technique has prevented widespread utilization of CA1 for practical clinical applications. To this end, we present a label-free electronic biosensor for detection of CA1 utilizing highly sensitive graphene field effect transistors (G-FETs) as a transducer and specific RNA aptamers as a probe. The binding of CA1 with aptamers resulted in a positive shift in Dirac voltage VD of the G-FETs, the magnitude of which depended on target concentration. These aptameric G-FET biosensors showed the binding affinity (KD) of ∼ 2.3 ng/ml (70 pM), which is four orders lower than that reported using a gel shift assay. This lower value of KD enabled us to achieve a detection range (10 pg/ml - 100 ng/ml) which is well in line with the clinically relevant range. These highly sensitive devices allowed us to further prove their clinical relevance by successfully detecting the presence of CA1 in human saliva samples. Utilization of this label-free biosensor could facilitate the early stage identification of various diseases associated with changes in concentration of CAs.


2020 ◽  
Vol 61 (5) ◽  
pp. 988-1004 ◽  
Author(s):  
Xiaoying Pan ◽  
Wei Yan ◽  
Zhenyi Chang ◽  
Yingchao Xu ◽  
Ming Luo ◽  
...  

Abstract Pollen development is critical to the reproductive success of flowering plants, but how it is regulated is not well understood. Here, we isolated two allelic male-sterile mutants of OsMYB80 and investigated how OsMYB80 regulates male fertility in rice. OsMYB80 was barely expressed in tissues other than anthers, where it initiated the expression during meiosis, reached the peak at the tetrad-releasing stage and then quickly declined afterward. The osmyb80 mutants exhibited premature tapetum cell death, lack of Ubisch bodies, no exine and microspore degeneration. To understand how OsMYB80 regulates anther development, RNA-seq analysis was conducted to identify genes differentially regulated by OsMYB80 in rice anthers. In addition, DNA affinity purification sequencing (DAP-seq) analysis was performed to identify DNA fragments interacting with OsMYB80 in vitro. Overlap of the genes identified by RNA-seq and DAP-seq revealed 188 genes that were differentially regulated by OsMYB80 and also carried an OsMYB80-interacting DNA element in the promoter. Ten of these promoter elements were randomly selected for gel shift assay and yeast one-hybrid assay, and all showed OsMYB80 binding. The 10 promoters also showed OsMYB80-dependent induction when co-expressed in rice protoplast. Functional annotation of the 188 genes suggested that OsMYB80 regulates male fertility by directly targeting multiple biological processes. The identification of these genes significantly enriched the gene networks governing anther development and provided much new information for the understanding of pollen development and male fertility.


2019 ◽  
Author(s):  
Jian Han ◽  
Zhe Liu ◽  
Tao Xu ◽  
Wanliang Shi ◽  
Xiaogang Xu ◽  
...  

AbstractStaphylococcus aureus is the leading cause of wound and nosocomial infections. Persister formation and virulence factors play crucial roles during S. aureus infection. However, the mechanisms of persister formation and its relationship to virulence in S. aureus are poorly understood. In this study, we screened a transposon mutant library and identified a LysR-type global transcriptional regulator NWMN_0037, which we called RpvA, for regulator of persistence and virulence, whose mutation leads to higher susceptibility to antibiotics ampicillin and norfloxacin and various stresses including oxidative stress, heat, and starvation in late exponential and early stationary phase. Interestingly, the rpvA mutant was highly attenuated for virulence compared with the parent S. aureus Newman strain as shown by a much higher lethal dose, reduced ability to survive in macrophages and to form abscess in the mouse model. Transcriptional profiling and metabolomic analysis revealed that RpvA could repress multiple genes including gapR, gapA, tpi, pgm, eno, glpD, and acs expression and enhance production of numerous intermediate metabolites including dihydroxyacetone phosphate, 2-phosphoglycerate, acetyl-CoA, glycerol 3-phosphate, L-glutamate in the cells. The differentially expressed genes and altered production of metabolites are distributed in global metabolism including carbohydrate metabolism, amino acid metabolism, energy metabolism and metabolism of cofactors and vitamins. These metabolic adjustments could cause the cell to go into dormancy, thus promoting S. aureus to convert to persisters. In addition, RpvA could upregulate the expression of virulence genes including hla, hlgA, hlgB, hlgC, lukF, lukS, lukD, sea and coa, and carotenoid biosynthesis genes (crtI, crtM, crtN). Gel shift assay confirmed that RpvA could bind to the promoters of candidate target genes hla, hlgB and crtM, thus promoting S. aureus virulence. Because of the important functions of the RpvA, it may serve as an attractive target for developing new drugs and vaccines to more effectively control S. aureus infections.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Yong Feng ◽  
Yunfei Liao ◽  
Jianming Zhang ◽  
Jacson Shen ◽  
Zengwu Shao ◽  
...  

Abstract Background Aberrant expression of cyclin-dependent protein kinases (CDK) is a hallmark of cancer. CDK11 plays a crucial role in cancer cell growth and proliferation. However, the molecular mechanisms of CDK11 and CDK11 transcriptionally regulated genes are largely unknown. Methods In this study, we performed a global transcriptional analysis using gene array technology to investigate the transcriptional role of CDK11 in osteosarcoma. The promoter luciferase assay, chromatin immunoprecipitation assay, and Gel Shift assay were used to identify direct transcriptional targets of CDK11. Clinical relevance and function of core-binding factor subunit beta (CBFβ) were further accessed in osteosarcoma. Results We identified a transcriptional role of protein-DNA interaction for CDK11p110, but not CDK11p58, in the regulation of CBFβ expression in osteosarcoma cells. The CBFβ promoter luciferase assay, chromatin immunoprecipitation assay, and Gel Shift assay confirmed that CBFβ is a direct transcriptional target of CDK11. High expression of CBFβ is associated with poor outcome in osteosarcoma patients. Expression of CBFβ contributes to the proliferation and metastatic behavior of osteosarcoma cells. Conclusions These data establish CBFβ as a mediator of CDK11p110 dependent oncogenesis and suggest that targeting the CDK11- CBFβ pathway may be a promising therapeutic strategy for osteosarcoma treatment. Graphical Abstract


2018 ◽  
Author(s):  
T.P.Vipin Madhavan

AbstractRns, an araC family of transcriptional activator (AFTR) is known to regulate many of the known pili in human ETEC. Apart from pili, Rns is also known to regulate some nonpilus genes believed to have role in virulence. EtpA is a nonpilus adhesin, encoded with inetpBACoperon in ETEC genome. Using a combination of qRT-PCR and gel shift assay, we show that Rns binds to upstream of etpBAC operon and upregulates the expression of EtpA. This is the first report of Rns regulating a known virulence factor in ETEC.


2017 ◽  
Vol 65 (9) ◽  
pp. 499-512 ◽  
Author(s):  
Brijesh K. Garg ◽  
Ralph H. Loring

Alpha7 nicotinic acetylcholine receptors (α7 nAChRs) are important drug targets in neurological disorders and inflammation, making their detection and localization by validated antibodies highly desirable. However, tests in knockout animals raised questions about specificity of antibodies to mouse α7 nAChRs. To date, methods for validating antibodies for rat or human α7 nAChR have not been reported. We developed a gel-shift assay for western blots using GH4C1 cells expressing either native rat receptors or α7 nAChR-green fluorescent protein (GFP) chimeras to evaluate seven commercially available α7 nAChR antibodies. Blots with anti-GFP antibody detected GFP or α7 nAChR-GFP expressed in GH4C1 cells, and 125I-α-bungarotoxin binding and RNA analysis demonstrated α7 nAChR expression. Validated samples were used to evaluate α7 nAChR antibodies by western blot and immunofluorescence studies. These methods confirmed that two of seven α7 nAChR antibodies identify gel-shifts for α7 nAChR/nAChR-GFP but only one antibody demonstrated low background and significant immunofluorescence differences between wild-type and α7 nAChR expressing GH4C1 cells. However, that polyclonal antibody displayed lot-to-lot variability. Our findings suggest that careful validation methods are required for all α7 nAChR receptor species and antibody lots and that the gel-shift assay may allow for relatively rapid antibody screening.


Sign in / Sign up

Export Citation Format

Share Document