edge network
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 119)

H-INDEX

10
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Bin Xu ◽  
Tao Deng ◽  
Yichuan Liu ◽  
Yunkai Zhao ◽  
Zipeng Xu ◽  
...  

Abstract The combination of idle computing resources in mobile devices and the computing capacity of mobile edge servers enables all available devices in an edge network to complete all computing tasks in coordination to effectively improve the computing capacity of the edge network. This is a research hotspot for 5G technology applications. Previous research has focused on the minimum energy consumption and/or delay to determine the formulation of the computational offloading strategy but neglected the cost required for the computation of collaborative devices (mobile devices, mobile edge servers, etc.); therefore, we proposed a cost-based collaborative computation offloading model. In this model, when a task requests these devices' assistance in computing, it needs to pay the corresponding calculation cost; and on this basis, the task is offloaded and computed. In addition, for the model, we propose an adaptive neighborhood search based on simulated annealing algorithm (ANSSA) to jointly optimize the offloading decision and resource allocation with the goal of minimizing the sum of both the energy consumption and calculation cost. The adaptive mechanism enables different operators to update the probability of selection according to historical experience and environmental perception, which makes the individual evolution have certain autonomy. A large number of experiments conducted on different scales of mobile user instances show that the ANSSA can obtain satisfactory time performance with guaranteed solution quality. The experimental results demonstrate the superiority of the mobile edge computing (MEC) offloading system. It is of great significance to strike a balance between maintaining the life cycle of smart mobile devices and breaking the performance bottleneck of MEC servers.


2021 ◽  
Vol 14 (1) ◽  
pp. 297
Author(s):  
Ren-Jie Zhang ◽  
Hsing-Wei Tai ◽  
Kuo-Tai Cheng ◽  
Zheng-Xu Cao ◽  
Hui-Zhong Dong ◽  
...  

This study puts forward a logical framework for green innovation network analysis, which includes a spatial dimension, a relational dimension, and a systems dimension. Here, we put forward some basic research ideas concerning the optimization and regulation of green innovation networks in terms of the systems dimension and we investigate the micro-dynamic mechanisms of green innovation network expansion using a spatial econometric model. Our main research results are as follows: The efficiency of green innovation in the Yangtze River Economic Belt has improved significantly, however, the gap between cities has gradually increased, and a problem of efficiency regression has emerged. The green innovation network has changed from the primary stage dominated by Edge Network to the rapid growth stage dominated by Supporting Network, and formed a complex network pattern with diversified hierarchical structure. Node symmetry is helpful in forming more extroverted connections and promoting the expansion of green innovation networks. Node proximity and connection symmetry inhibit the growth and development of networks, and knowledge flow cooperation networks can accelerate the evolution of green innovation networks. Finally, this paper holds that we should combine the actual development needs, emphasize the basic principles of differentiated development, and construct the development pattern of regional collaborative innovation. This can also provide a theoretical reference for enriching our understanding of green innovation networks while narrowing the gap between cities.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 9
Author(s):  
Hisham A. Kholidy

Overall, 5G networks are expected to become the backbone of many critical IT applications. With 5G, new tech advancements and innovation are expected; 5G currently operates on software-defined networking. This enables 5G to implement network slicing to meet the unique requirements of every application. As a result, 5G is more flexible and scalable than 4G LTE and previous generations. To avoid the growing risks of hacking, 5G cybersecurity needs some significant improvements. Some security concerns involve the network itself, while others focus on the devices connected to 5G. Both aspects present a risk to consumers, governments, and businesses alike. There is currently no real-time vulnerability assessment framework that specifically addresses 5G Edge networks, with regard to their real-time scalability and dynamic nature. This paper studies the vulnerability assessment in the 5G networks and develops an optimized dynamic method that integrates the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) with the hexagonal fuzzy numbers to accurately analyze the vulnerabilities in 5G networks. The proposed method considers both the vulnerability and 5G network dynamic factors such as latency and accessibility to find the potential attack graph paths where the attack might propagate in the network and quantifies the attack cost and security level of the network. We test and validate the proposed method using our 5G testbed and we compare the optimized method to the classical TOPSIS and the known vulnerability scanner tool, Nessus.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianzhi Liu

Based on mobile edge computing and user perception technology, this paper analyzes and discusses the respective advantages and disadvantages of the important optimization models and mobile models in the animation art design, as well as the wireless block data transmission mechanism and protocol. In order to solve the problem that user mobility cannot be sensed, a content-centric mobile edge animation art design mechanism based on user mobility perception is proposed. This mechanism comprehensively calculates the centrality of users’ perception of nodes, the idle rate of animation design, and the staying time of users in a small area. The mobile edge network controller integrates the information of each edge user’s perception node, calculates the importance of each edge user’s perception node and prioritizes it, and selects the appropriate content animation to design the user perception node according to the ranking result. Finally, various simulation or platform test experiments were carried out for all the design schemes in this paper, and the experimental results were analyzed. The simulation experiment results show that compared with the traditional animation design mechanism, the animation art design system effectively reduces the average number of hops for users to obtain content by up to 15.9%, improves the hit rate of edge user perception node animation design by at least 13.7%, and reduces the traffic entering the core network by up to 32.1%. According to the comparison results, the various designs in this work can successfully use sensor data to preclassify migration tasks in the mobile edge network environment. Compared with the latest block data transmission protocol, it has a significant performance improvement, reducing the data distribution delay by 34.8%, thereby helping to improve the overall efficiency of mobile edge computing.


Author(s):  
Zhongyi Zhang ◽  
Weihua Zhao ◽  
Ouhan Huang ◽  
Gangyong Jia ◽  
Youhuizi Li ◽  
...  

AbstractEdge computing perfectly integrates cloud computing centers and edge-end devices together, but there are not many related researches on how the edge-end node devices work to form an edge network and what the protocols used to implement the communication among nodes in the edge network. Aiming at the problem of coordinated communication among edge nodes in the current edge computing network architecture, this paper proposes an edge network routing and forwarding protocol based on target tracking scenarios. This protocol can meet the dynamic changes of node locations, and the elastic expansion of node scale. Individual node failures will not affect the overall network, and the network ensures efficient real-time with less communication overhead. The experimental results display that the protocol can effectively reduce the communications volume of the edge network, improve the overall efficiency of the network, and set the optimal sampling period, so as to ensure that the network delay is minimized.


2021 ◽  
Vol 13 (11) ◽  
pp. 294
Author(s):  
Jianhua Liu ◽  
Zibo Wu

The cloud-based Internet of Things (IoT-Cloud) combines the advantages of the IoT and cloud computing, which not only expands the scope of cloud computing but also enhances the data processing capability of the IoT. Users always seek affordable and efficient services, which can be completed by the cooperation of all available network resources, such as edge computing nodes. However, current solutions exhibit significant security and efficiency problems that must be solved. Insider attacks could degrade the performance of the IoT-Cloud due to its natural environment and inherent open construction. Unfortunately, traditional security approaches cannot defend against these attacks effectively. In this paper, a novel practical edge computing service architecture (PECSA), which integrates a trust management methodology with dynamic cost evaluation schemes, is proposed to address these problems. In the architecture, the edge network devices and edge platform cooperate to achieve a shorter response time and/or less economic costs, as well as to enhance the effectiveness of the trust management methodology, respectively. To achieve faster responses for IoT-based requirements, all the edge computing devices and cloud resources cooperate in a reasonable way by evaluating computational cost and runtime resource capacity in the edge networks. Moreover, when cooperated with the edge platform, the edge networks compute trust values of linked nodes and find the best collaborative approach for each user to meet various service requirements. Experimental results demonstrate the efficiency and the security of the proposed architecture.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2830
Author(s):  
Mitra Pooyandeh ◽  
Insoo Sohn

The network edge is becoming a new solution for reducing latency and saving bandwidth in the Internet of Things (IoT) network. The goal of the network edge is to move computation from cloud servers to the edge of the network near the IoT devices. The network edge, which needs to make smart decisions with a high level of response time, needs intelligence processing based on artificial intelligence (AI). AI is becoming a key component in many edge devices, including cars, drones, robots, and smart IoT devices. This paper describes the role of AI in a network edge. Moreover, this paper elaborates and discusses the optimization methods for an edge network based on AI techniques. Finally, the paper considers the security issue as a major concern and prospective approaches to solving this issue in an edge network.


Sign in / Sign up

Export Citation Format

Share Document