dental models
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 79)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
pp. 145
Author(s):  
Olivier de Waard ◽  
Robin Bruggink ◽  
Frank Baan ◽  
Hendrikus A. J. Reukers ◽  
Ewald M. Bronkhorst ◽  
...  

The purpose of this study was to explore the operator performance of the fabrication of digital orthodontic setups integrated into cone beam computed tomography (CBCT) scans. Fifteen patients who underwent a combined orthodontic–orthognathic surgical treatment were included. The pre-treatment digital dental models and CBCT scans were fused, and four operators made virtual setups twice for all patients. Differences between the virtual setups were calculated by recording tooth crown movement from the pre-treatment model to the virtual setup. To examine performance, Pearson’s correlation coefficients, duplicate measurement errors, and inter-operator differences were calculated. For intra-operator performance, correlation values varied among tooth types, with mean correlation values from 0.66 to 0.83 for the maxilla and 0.70 to 0.83 for the mandible. For inter-operator performance, mean correlation values varied from 0.40 to 0.87 for the maxilla and from 0.44 to 0.80 for the mandible. Rotational mean differences exceeded the range of clinical acceptance (>2 degrees) at 18% for the maxilla and 20.8% for the mandible, and translational mean differences exceeded the range of clinical acceptance (0.6 mm) at 9.7% and 26% for the maxilla and mandible, respectively. The intra- and inter-operator performance of digital orthodontic setup construction for virtual three-dimensional orthognathic planning shows significant errors.


2021 ◽  
Vol 11 (24) ◽  
pp. 12076
Author(s):  
Masataka Ariwa ◽  
Tomoki Itamiya ◽  
So Koizumi ◽  
Tetsutaro Yamaguchi

Using 3D technologies such as virtual reality (VR) and augmented reality (AR), has intensified nowadays. The mainstream AR devices in use today are head-mounted displays (HMDs), which, due to specification limitations, may not perform to their full potential within a distance of 1.0 m. The spatial reality display (SRD) is another system that facilitates stereoscopic vision by the naked eye. The recommended working distance is 30.0~75.0 cm. It is crucial to evaluate the observation accuracy within 1.0 m for each device in the medical context. Here, 3D-CG models were created from dental models, and the observation errors of 3D-CG models displayed within 1.0 m by HMD and SRD were verified. The measurement error results showed that the HMD model yielded more significant results than the control model (Model) under some conditions, while the SRD model had the same measurement accuracy as the Model. The measured errors were 0.29~1.92 mm for HMD and 0.02~0.59 mm for SRD. The visual analog scale scores for distinctness were significantly higher for SRD than for HMD. Three-dimensionality did not show any relationship with measurement error. In conclusion, there is a specification limitation for using HMDs within 1.0 m, as shown by the measured values. In the future, it will be essential to consider the characteristics of each device in selecting the use of AR devices. Here, we evaluated the accuracies of 3D-CG models displayed in space using two different systems of AR devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roshan Kumar Chaudhary ◽  
Nagabhushana Doggalli ◽  
Nuwadatta Subedi

Abstract Background In the South Indian population, an odontometric analysis was performed with the older age group (18 to 60 years) and using the dimensionally stable polyvinyl siloxane elastomeric impression material (PVS) that can create minute detail replicas of tooth structure. Both measurements of buccolingual and mesiodistal dimensions of all permanent teeth (except third molars) were taken with a digital vernier calliper on 400 dental models as a reference sample and 80 dental models as a test sample, with the data from the reference samples subjected to an independent samples t test and stepwise logistic regression analysis. Results Independent samples t test divulged that canines were the most sexually dimorphic teeth followed by buccolingual dimensions of central and lateral incisors. All tooth variables were found greater in males, i.e. 56/56 (100%), whereas stepwise logistic regression analysis formula disclosed that the prediction accuracy in the age group of 18 to 39 years was 91%, 85% and 73% using the teeth from both the jaws, maxillary teeth and mandibular teeth respectively; similarly, in the age group of 40 to 60 years, it was 85%, 84% and 83% using teeth from both jaws, maxillary teeth and mandibular teeth respectively; finally, in the overall age group of 18 to 60 years, it was 83% and 75% using teeth from both jaws, maxillary teeth and mandibular teeth respectively. The mean percentage of sex dimorphism was found high in South Indian dentition compared with other populations. Conclusions Nonetheless, the accuracy of the results obtained can be considered moderate to high, and sexing can be achieved using regression formulas for each age group, which reflects demographic diversity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yujia Wu ◽  
Zhewen Hu ◽  
Xinyue Zhang ◽  
Hefei Bai ◽  
Yuchun Sun ◽  
...  

Abstract Purpose The scanning of plaster models for three-dimensional (3D) construction requires their rigid fixation in the intercuspal position. Factors such as installation, motion, and scanning procedures influenced the accuracy of this method, which ultimately influence the results. Therefore, the present study attempted to provide an optimal and accurate method with less complex procedures and a more accessible equipment for determining the intercuspal relation in the 3D occlusal construction of dental models. Methods A pair of plastic mounting plates that could be directly attached to a mechanical articulator was designed and 3D printed. Nine axial hemispherical concaves were introduced on the axial surface of each plate. The rigidly fixed maxillary and mandibular dental models were scanned directly. The distances DR between nine pairs of concaves on both mounting plates adhered to the maxillary and mandibular sections of the articulator were measured using the three-coordinate measuring machine Faro Edge as the reference. The present study comprised seven test groups varying in number and location. Assessing the reference points from each of the seven groups performed the 3D construction. The Geomagic Studio software was used to construct the concaves of digital casts, and the distances DM between the pairs of concaves were measured as test values. Variable differences between DR and DM were analyzed. Results An optimum distribution scheme was obtained for reference point registration by quantitatively evaluating accuracy levels of the 3D constructions of different reference point distribution patterns. This scheme can serve as a reference for related studies and dental clinic operations. Conclusions Three-dimensional construction of the intercuspal relation during scanning of the maxillary and mandibular models with an accuracy of 0.046 mm ± 0.009 mm can be achieved using the improved design of mounting plates.


2021 ◽  
Vol 10 (11) ◽  
pp. e344101113370
Author(s):  
Fernanda Latorre Melgaço Maia ◽  
Ademir Franco ◽  
Daphne Azambuja Hatschbach de Aquino ◽  
Luciana Butini Oliveira ◽  
José Luiz Cintra Junqueira ◽  
...  

This study aimed to assess the reproducibility of linear measurements performed in dental models produced via intraoral scanning and three-dimensional (3D) printing using digital light processing (DLP) and fused deposition modeling (FDM). A sample of 22 participants was selected for this study. Intraoral scanning was performed in each participant with TRIOS™ (3Shape A/S™, Copenhagen, Denmark) device. The digital models were 3D printed using DLP and FDM techniques. Using a caliper, intraoral linear measurements were performed in situ (on the surface of participant’s teeth) and on the 3D printed models. The measurements taken intraoral and on the models were compared using the Intraclass Correlation Coefficient (ICC). The correlation between measurements taken in situ and on DLP models was poor (<0.4), while between in situ and FDM it ranged from poor to satisfactory (<0.75). Generalized linear model showed that the differences did not reach statistically significant levels (p>0.05). According to Bland-Altman approach, the size of measurements did not bias the outcomes. The intraoral scanning and 3D printing techniques used in this study enabled the reproducibility of linear measurements, however, discrete distortions that might be clinically significant occurred.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5911
Author(s):  
Jae-Hyun Park ◽  
Jin-Young Choi ◽  
Song Hee Oh ◽  
Seong-Hun Kim

Accurate bracket placement is essential for successful orthodontic treatment. An indirect bracket bonding system (IDBS) has been developed to ensure proper bracket positioning with three-dimensional computer-aided transfer jigs. The purpose of this study was to investigate the accuracy of bracket positioning by a one-body transfer jig according to the tooth type and presence/absence of a resin base. In total, 506 teeth from 20 orthodontic patients were included in this study. After initial dental models were scanned, virtual setup and bracket positioning procedures were performed with 3D software. Transfer jigs and RP models were fabricated with a 3D printer, and brackets were bonded to the RP model with or without resin base fabrication. The best-fit method of 3D digital superimposition was used to evaluate the lineal and angular accuracy of the actual bracket position compared to a virtual bracket position. Although all the measurements showed significant differences in position, they were clinically acceptable. Regarding the tooth types, premolars and molars showed higher accuracy than anterior teeth. The presence or absence of a resin base did not consistently affect the accuracy. In conclusion, the proper application of IDBS should be performed considering the errors, and resin base fabrication might not be essential in ensuring high-accuracy IDBS.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 180
Author(s):  
William Suryajaya ◽  
Maria Purbiati ◽  
Nada Ismah

Background: Due to advances in digital technology, it is possible to obtain digital dental models through intraoral scanning. The stereolithographic data collected from the scanner can subsequently be printed into a three-dimensional dental model in resinic material. However, the accuracy between digital dental models and printed dental models needs to be evaluated since it might affect diagnosis and treatment planning in orthodontic treatment. This study aimed to evaluate the accuracy of digital models scanned by a Trios intraoral scanner and three-dimensional dental models printed using a Formlabs 2 3D printer in linear measurements and Bolton analysis. Methods: A total of 35 subjects were included in this study. All subjects were scanned using a Trios intraoral scanner to obtain digital study models. Stereolithographic data from previous scanning was printed using a Formlabs 2 3D printer to obtain printed study models. Mesiodistal, intercanine, intermolar, and Bolton analysis from all types of study models were measured. The intraclass correlation coefficient was used to assess intraobserver and interobserver reliability. All data were then statistically analyzed. Results: The reliability tests were high for both intraobserver and interobserver reliability, which demonstrates high reproducibility for all measurements on all model types. Most of the data compared between study models showed no statistically significant differences, though some data differed significantly. However, the differences are considered clinically insignificant. Conclusion: Digital dental models and three-dimensional printed dental models may be used interchangeably with plaster dental models for diagnostic and treatment planning purposes. Keywords: Accuracy, 3D printing, digital dental model, printed dental model.


Author(s):  
Brénainn Woodsend ◽  
Eirini Koufoudaki ◽  
Peter A. Mossey ◽  
Ping Lin

2021 ◽  
Vol 160 (3) ◽  
pp. 451-458.e2
Author(s):  
Jennifer Ko ◽  
Richard D. Bloomstein ◽  
David Briss ◽  
J. Nathaniel Holland ◽  
Hamdy Mohammed Morsy ◽  
...  

Author(s):  
Sukumaran Anil ◽  
Sajith Vellappally ◽  
Abdulaziz A. Al Kheraif ◽  
Darshan Devang Divakar ◽  
Wael Said ◽  
...  

AbstractDigital dental models are widely used compared to dental impressions or plaster-dental models for occlusal analysis as well as fabrication of prosthodontic and orthodontic appliances. The digital dental model has been considered as one of the significant measures for the analysis of dental occlusion. However, the process requires more computation time with less accuracy during the re-establishment of dental occlusion. In this research, a modern method to re-establish dental occlusion has been designed using a Reconstructed-based Identical Matrix Point (RIMP) technique. The curvature of the dental regions has been reconstructed using distance mapping in order to minimize the computation time, and an iterative point matching approach is used for accurate re-establishment. Satisfactory restoration and occlusion tests have been analyzed using a dental experimental setup with high-quality digital camera images. Further, the high-quality camera images are converted to grayscale images for mathematical computation using MATLAB image processing toolbox. Besides, 70 images have been taken into consideration in which 30 planar view images has been utilized for experimental analysis. Indeed, based on the outcomes, the proposed RIMP outperforms overall accuracy of (91.50%) and efficiency of (87.50%) in comparison with conventional methods such as GLCM, PCR, Fuzzy C Means, OPOS, and OGS.


Sign in / Sign up

Export Citation Format

Share Document