bone surgery
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 70)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 7 ◽  
pp. 31-35
Author(s):  
B. Aishwarya ◽  
S. Lakshmi Sree ◽  
R. Balasubramanian

Dentistry has undergone significant improvement with a lot of changing concepts involving novel surgical tools over the past two decades. Piezoelectric surgery, also popularly called as piezosurgery (PS), is a rapidly evolving technique of bone surgery which is gaining importance because of its ability to place osteotomy cuts with absolute precision and confidence, especially near the vital structures. Piezosurgical device functions with an ultrasonic frequency (25–29 KHz) resulting in microvibrations in the range of 60–200 µm/s enabling bone cutting that is secured and accurate preserving the underlying neurovascular elements along with improved visibility through bloodless surgical site and thorough debridement using internal irrigation system. Till date, PS has seen wide applications in various disciplines of medicine. In the field of dentistry, PS has emerged as a promising technical modality in bone graft harvesting, alveolar ridge expansion, sinus lift procedures, osteogenic distraction, and endodontic and periodontal surgeries. The present review addresses the efficiency of PS comparing it with the traditional dental surgical equipment. The advantages, limitations, and biological effects of PS as well its various applications in dentistry have also been discussed.


2021 ◽  
Vol 9 (33) ◽  
pp. 10151-10160
Author(s):  
Li-Yan Zhao ◽  
Xiong-Tao Liu ◽  
Zhi-Li Zhao ◽  
Ru Gu ◽  
Xiu-Mei Ni ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4338
Author(s):  
Stefania Bergamini ◽  
Elisa Bellei ◽  
Luigi Generali ◽  
Aldo Tomasi ◽  
Carlo Bertoldi

Chlorhexidine (CHX) is considered the gold standard for the chemical control of bacterial plaque and is often used after surgical treatment. However, CHX employment over an extended time is responsible for side effects such as the appearance of pigmentations on the teeth and tongue; the discoloration effects are less pronounced when using a CHX-based mouthwash with added an anti-discoloration system (ADS). The aim of this study was to evaluate, using one- and two-dimensional gel electrophoresis combined with mass spectrometry, the possible proteomic changes induced by CHX and CHX+ADS in the supragingival dental sites susceptible to a discoloration effect. The tooth surface collected material (TSCM) was obtained by curettage after resective bone surgery from three groups of patients following a supportive therapy protocol in which a mechanical control was combined with placebo rinses or CHX or a CHX+ADS mouthwash. The proteomic analysis was performed before surgery (basal conditions) and four weeks after surgery when CHX was used (or not) as chemical plaque control. Changes in the TSCM proteome were only revealed following CHX treatment: glycolytic enzymes, molecular chaperones and elongation factors were identified as more expressed. These changes were not detected after CHX+ADS treatment. An ADS could directly limit TSCM forming and also the CHX antiseptic effect reduces its ability to alter bacterial cell permeability. However, Maillard’s reaction produces high molecular weight molecules that change the surface properties and could facilitate bacterial adhesion.


2021 ◽  
Vol 22 (14) ◽  
pp. 7690
Author(s):  
Ilya Nifant’ev ◽  
Dmitry Gavrilov ◽  
Alexander Tavtorkin ◽  
Maria Chinova ◽  
Victoria Besprozvannykh ◽  
...  

In bone surgery and orthopedics, bioresorbable materials can be helpful in bone repair and countering post-op infections. Explicit antibacterial activity, osteoinductive and osteoconductive effects are essential to achieving this objective. Nonwoven electrospun (ES) fibers are receiving the close attention of physicians as promising materials for wound dressing and tissue engineering; potentially, in high contrast with dense materials, ES mats hamper regeneration of the bone extracellular matrix to a lesser extent. The use of the compositions of inherently biodegradable polyesters (poly(ε-caprolactone) PCL, poly(lactoglycolide), etc.), calcium phosphates and antibiotics is highly prospective, but the task of forming ES fibers from such compositions is complicated by the incompatibility of the main organic and inorganic ingredients, polyesters and calcium phosphates. In the present research we report the synthesis of hydroxyapatite (HAp) nanoparticles with uniform morphology, and demonstrate high efficiency of the block copolymer of PCL and poly(ethylene phosphoric acid) (PEPA) as an efficient compatibilizer for PCL/HAp mixtures that are able to form ES fibers with improved mechanical characteristics. The materials obtained in the presence of vancomycin exhibited incremental drug release against Staphylococcus aureus (St. aureus).


Author(s):  
Andrea Leti Acciaro ◽  
Mario Lando ◽  
Marta Starnoni ◽  
Giuliano Giuca ◽  
Roberto Adani
Keyword(s):  

2021 ◽  
Vol 29 (3) ◽  
pp. 412-414
Author(s):  
Ulaş Kumbasar ◽  
Pramod Bonde

Bone cement implantation syndrome is a rare and potentially fatal complication which may occur following cemented bone surgery. Herein, we present a case of delayed and fatal presentation of bone cement implantation syndrome following cemented spinal surgery, despite mechanical support with extracorporeal mechanical oxygenation.


2021 ◽  
Vol 17 (7) ◽  
pp. 1435-1447
Author(s):  
Quan-Ming Zhao ◽  
Bo Li ◽  
Fu-Xun Yu ◽  
Yan-Kun Li ◽  
Jie-Shi Wu ◽  
...  

Titanium (Ti) and its alloys are widely used in bone surgery by virtue of their excellent mechanical properties and good biocompatibility; however, complications such as loosening and sinking have been reported post-implantation. Herein we deposited a copper–cobalt (Cu–Co) co-doped titanium dioxide (TUO) coating on the surface of Ti implants by microarc oxidation. The osteogenic and antimicrobial properties of the coating were evaluated by in vitro experiments, and we also assessed β-catenin expression levels on different sample surfaces. Our results revealed that the coating promoted the adhesion, proliferation, and differentiation of MG63 osteoblasts, and TUO coating promoted β-catenin expression; moreover, the proliferation of Staphylococcus aureus was inhibited. To summarize, we report that Cu–Co co-doping can enhance the osteogenic and antibacterial activities of orthopedic Ti implants, leading to potentially improved clinical performance.


Sign in / Sign up

Export Citation Format

Share Document