wave energy flux
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 30)

H-INDEX

13
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Andrés Fernando Orejarena ◽  
Juan Manuel Sayol ◽  
Ismael Hernández-carrasco ◽  
Alejandro Cáceres ◽  
Juan Camilo Restrepo ◽  
...  

Abstract Wave energy flux (WEF) is assessed in the Caribbean Sea from a 60-year (1958--2017) wave hindcast. We use a novel approach, based on neural networks, to identify coherent regions of similar WEF and their association with different climate patterns. This method allows for a better evaluation of the underlying dynamics behind seasonal and inter-annual WEF variability, including the effect induced by the latitudinal migration of the Intertropical Convergence Zone (ITCZ), and the influence of El Ni\~no-Southern Oscillation events. Results show clear regional differences of the WEF variability likely due to both a clear regionalization of the WEF due to both the intensification and migration of the ITCZ. WEF exhibits a strong semiseasonal signal in areas of the continental shelf, with maximums in January and June, in agreement with the sea surface temperature and sea level pressure variability. At larger scales, WEF shows a significant correlation with the Oceanic Ni\~no Index depicting positive values in the central and western basin and negative ones at the eastern side.


MAUSAM ◽  
2021 ◽  
Vol 52 (2) ◽  
pp. 325-332
Author(s):  
SOMENATH DUTTA

An attempt has been made to parameterize the wave momentum flux wave energy flux and pressure drag associated with mountain wave across the Mumbai-Pune section of western ghat mountain in India.   A two dimensional frictionless, adiabatic, hydrostatic, Boussinesq flow with constant basic flow (U) and constant Brunt Vaisala frequency (N) across a mesoscale mountain with infinite extension in the Cross wind direction, has been considered here.   It has been shown that for a vertically propagating (or decaying) waves the wave momentum flux is downward (or upward) and the wave energy flux is upward (or downward). It has also been shown that both the fluxes are independent of the half width of the bell shaped part of the western ghat. The analytically derived formula have been used to compute the pressure drag and to find out the vertical profile of wave momentum flux and wave energy flux for different cases of mountain wave across western ghat, as reported by earlier workers.


2021 ◽  
Vol 127 (15) ◽  
Author(s):  
Niels Warburton ◽  
Adam Pound ◽  
Barry Wardell ◽  
Jeremy Miller ◽  
Leanne Durkan

Author(s):  
Andrés F. Orejarena-Rondón ◽  
Juan C. Restrepo ◽  
Alex Correa-Metrio ◽  
Alejandro Orfila

2021 ◽  
pp. 1-36
Author(s):  
KoueKam K. Arnaud ◽  
Frédéric Bonou ◽  
Zacharie Sohou ◽  
Donatus B. Angnuureng ◽  
Rafael Almar

Beaches are characterized by complex spatial and temporal patterns of erosion and accretion subjected to significant wave and tide influence. The objective of this study is to estimate the evolution of hydromorphodynamic conditions on the shoreline of Grand Popo Beach observed from two adjacent video camera setups. We have analyzed the impact of the variability of hydrodynamic parameters on the beach evolution and evaluated the variabilities of the hydrodynamic and morphologic parameters from the two cameras. Despite the nonhomogeneity within the cameras’ intrinsic properties, the various results obtained from the two systems indicate that wave conditions (peak period and significant height) from the cameras have the same variations, whereas the shoreline variations of camera A are not the same as those of camera B. It is generally during the summer that the Grand Popo Beach is exposed to an agitated environment with strong observed values of significant wave heights and wave energy flux, undoubtedly resulting in significant sediment transport along the beach leading a shoreline retreat. The results indicate that in 3.5 years the shoreline of Grand Popo Beach has retreated by 10 m.


Author(s):  
Qingyang Song ◽  
Hidenori Aiki

AbstractIntraseasonal waves in the tropical Atlantic Ocean have been found to carry prominent energy that affects interannual variability of zonal currents. This study investigates energy transfer and interaction of wind-driven intraseasonal waves using single-layer model experiments. Three sets of wind stress forcing at intraseasonal periods of around 30 days, 50 days and 80 days with a realistic horizontal distribution are employed separately to excite the second baroclinic mode in the tropical Atlantic. A unified scheme for calculating the energy flux, previously approximated and used for the diagnosis of annual Kelvin and Rossby waves, is utilized in the present study in its original form for intraseasonal waves. Zonal velocity anomalies by Kelvin waves dominate the 80-day scenario. Meridional velocity anomalies by Yanai waves dominate the 30-day scenario. In the 50-day scenario, the two waves have comparable magnitudes. The horizontal distribution of wave energy flux is revealed. In the 30-day and 50-day scenarios, a zonally alternating distribution of cross-equatorial wave energy flux is found. By checking an analytical solution excluding Kelvin waves, we confirm that the cross-equatorial flux is caused by the meridional transport of geopotential at the equator. This is attributed to the combination of Kelvin and Yanai waves and leads to the asymmetric distribution of wave energy in the central basin. Coastally-trapped Kelvin waves along the African coast are identified by along-shore energy flux. In the north, the bend of the Guinea coast leads the flux back to the equatorial basin. In the south, the Kelvin waves strengthened by local wind transfer the energy from the equatorial to Angolan regions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Zimeng Li ◽  
Hidenori Aiki ◽  
Motoki Nagura ◽  
Tomomichi Ogata

AbstractA recently developed energy flux diagnosis scheme, which incorporates a smooth connection between the tropical and subtropical zones, is used in the present study to investigate vertically propagating waves in the tropical Indian Ocean (IO) based on the result of a linear, continuously stratified ocean model driven by climatological wind forcing. This extended diagnosis reveals deep-reaching eastward energy fluxes at the equator which develop four times per year and are associated with equatorial Kelvin waves (KWs) generated by semiannual winds. The authors find that the downward transfer of wave energy is particularly deep in the southern Bay of Bengal (SBoB). This downward flux is attributed to off-equatorial Rossby waves and appears four times per year, maximizing its amplitude during November–December. Southwesterly winds in the Arabian Sea intensify eastward energy flux of KWs at mid-depth, which maximizes in amplitude in August. This is contrastive to KW energy flux at the surface which peaks in May. These mid-depth equatorial KW packets subsequently arrive at the eastern boundary of the IO and are diffracted poleward to produce downward energy flux in November and December detected in the SBoB.


Author(s):  
Johannes Becherer ◽  
James N. Moum ◽  
Joseph Calantoni ◽  
John A. Colosi ◽  
John A. Barth ◽  
...  

AbstractBroadly-distributed measurements of velocity, density and turbulence spanning the inner shelf off central California indicate that (i) the average shoreward-directed internal tide energy flux (〈FE〉) decreases to near 0 at the 25 m isobath; (ii) the vertically-integrated turbulence dissipation rate (〈D〉) is approximately equal to the flux divergence of internal tide energy (∂x〈FE〉); (iii) the ratio of turbulence energy dissipation in the interior relative to the bottom boundary layer (BBL) decreases toward shallow waters; (iv) going inshore, 〈FE〉 becomes decorrelated with the incoming internal wave energy flux; and (v) 〈FE〉 becomes increasingly correlated with stratification toward shallower water.


2021 ◽  
pp. 108654
Author(s):  
Gabriel Ibarra-Berastegi ◽  
Alain Ulazia ◽  
Jon Sáenz ◽  
Paula Serras ◽  
Santos J. González Rojí ◽  
...  

2021 ◽  
Vol 648 ◽  
pp. A77
Author(s):  
J. M. Riedl ◽  
C. A. Gilchrist-Millar ◽  
T. Van Doorsselaere ◽  
D. B. Jess ◽  
S. D. T. Grant

Context. Solar magnetic pores are, due to their concentrated magnetic fields, suitable guides for magnetoacoustic waves. Recent observations have shown that propagating energy flux in pores is subject to strong damping with height; however, the reason is still unclear. Aims. We investigate possible damping mechanisms numerically to explain the observations. Methods. We performed 2D numerical magnetohydrodynamic (MHD) simulations, starting from an equilibrium model of a single pore inspired by the observed properties. Energy was inserted into the bottom of the domain via different vertical drivers with a period of 30 s. Simulations were performed with both ideal MHD and non-ideal effects. Results. While the analysis of the energy flux for ideal and non-ideal MHD simulations with a plane driver cannot reproduce the observed damping, the numerically predicted damping for a localized driver closely corresponds with the observations. The strong damping in simulations with localized driver was caused by two geometric effects, geometric spreading due to diverging field lines and lateral wave leakage.


Sign in / Sign up

Export Citation Format

Share Document