wall rock
Recently Published Documents


TOTAL DOCUMENTS

429
(FIVE YEARS 92)

H-INDEX

30
(FIVE YEARS 6)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Abdorrahman Rajabi ◽  
Carles Canet ◽  
Pura Alfonso ◽  
Pouria Mahmoodi ◽  
Ali Yarmohammadi ◽  
...  

The Ab-Bid deposit, located in the Tabas-Posht e Badam metallogenic belt (TPMB) in Central Iran, is the largest Pb-Zn (±Cu) deposit in the Behadad-Kuhbanan mining district. Sulfide mineralization in the Ab-Bid deposit formed in Middle Triassic carbonate rocks and contains galena and sphalerite with minor pyrite, chalcopyrite, chalcocite, and barite. Silicification and dolomitization are the main wall-rock alteration styles. Structural and textural observations indicate that the mineralization occurs as fault fills with coarse-textured, brecciated, and replacement sulfides deposited in a bookshelf structure. The Ab-Bid ore minerals precipitated from high temperature (≈180–200 °C) basinal brines within the dolomitized and silicified carbonates. The sulfur isotope values of ore sulfides suggest a predominant thermochemical sulfate reduction (TSR) process, and the sulfur source was probably Triassic-Jurassic seawater sulfate. Given the current evidence, mineralization at Ab-Bid resulted from focusing of heated, over-pressurized brines of modified basinal origin into an active fault system. The association of the sulfide mineralization with intensely altered wall rock represents a typical example of such features in the Mississippi Valley-type (MVT) metallogenic domain of the TPMB. According to the structural data, the critical ore control is a bookshelf structure having mineralized dextral strike-slip faults in the northern part of the Ab-Bid reverse fault, which seems to be part of a sinistral brittle shear zone. Structural relationships also indicate that the strata-bound, fault-controlled Ab-Bid deposit was formed after the Middle Jurassic, and its formation may be related to compressive and deformation stages of the Mid-Cimmerian in the Middle Jurassic to Laramide orogenic cycle in the Late Cretaceous-Tertiary.


2022 ◽  
Author(s):  
Manuel D. Menzel ◽  
Janos L. Urai ◽  
Estibalitz Ukar ◽  
Thierry Decrausaz ◽  
Marguerite Godard

Abstract. The reaction of serpentinized peridotites with CO2-bearing fluids to listvenite (quartz-carbonate rocks) requires massive fluid flux and significant permeability despite increase in solid volume. Listvenite and serpentinite samples from Hole BT1B of the Oman Drilling Project help to understand mechanisms and feedbacks during vein formation in this process. Samples analyzed in this study contain abundant magnesite veins in closely spaced, parallel sets and younger quartz-rich veins. Cross-cutting relationships suggest that antitaxial, zoned carbonate veins with elongated grains growing from a median zone towards the wall rock are among the earliest structures to form during carbonation of serpentinite. Their bisymmetric chemical zoning of variable Ca and Fe contents, a systematic distribution of SiO2 and Fe-oxide inclusions in these zones, and cross-cutting relations with Fe-oxides and Cr-spinel indicate that they record progress of reaction fronts during replacement of serpentine by carbonate in addition to dilatant vein growth. Euhedral terminations and growth textures of carbonate vein fill together with local dolomite precipitation and voids along the vein – wall rock interface suggest that these antitaxial veins acted as preferred fluid pathways allowing infiltration of CO2-rich fluids necessary for carbonation to progress. Fluid flow was probably further enabled by external tectonic stress, as indicated by closely spaced sets of subparallel carbonate veins. Despite widespread subsequent quartz mineralization in the rock matrix and veins, which most likely caused a reduction in the permeability network, carbonation proceeded to completion in listvenite horizons.


2021 ◽  
Vol 9 ◽  
Author(s):  
Myo Kyaw Hlaing ◽  
Kotaro Yonezu ◽  
Khin Zaw ◽  
Aung Zaw Myint ◽  
May Thwe Aye ◽  
...  

The Mergui Belt of Myanmar is endowed with several important orogenic gold deposits, which have economic significance and exploration potential. The present research is focused on two gold districts, Modi Taung-Nankwe and Kyaikhto in the Mergui Belt comparing their geological setting, ore and alteration mineralogy, fluid inclusion characteristics, and ore-forming processes. Both of the gold districts show similarities in nature and characteristics of gold-bearing quartz veins occurring as sheeted veins, massive veins, stockworks to spider veinlets. These gold deposits are mainly hosted by the mudstone, slaty mudstone, greywacke sandstone, slate, and slaty phyllite of Mergui Group (dominantly of Carboniferous age). The gold-bearing quartz veins generally trend from NNE to N-S, whereas some veins strike NW-SE in all deposits. The gold-bearing quartz veins are mainly occurred within the faults and shear zones throughout the two gold districts. Wall-rock alterations at Shwetagun are mainly silicification, chloritization, and sericitization, whereas in Kyaikhto, silicification, carbonation, as well as chloritization, and sericitization are common. At Shwetagun, the gold occurred as electrum grains in fractures within the veins and sulfides. In Kyaikhto, the quartz-carbonate-sulfide and quartz-sulfide veins appeared to have formed from multiple episodes of gold formation categorizing mainly as free native gold grains in fractures within the veins or invisible native gold and electrum within sulfides. At Shwetagun, the ore minerals in the auriferous quartz veins include pyrite, galena, and sphalerite, with a lesser amount of electrum, chalcopyrite, arsenopyrite, chlorite, and sericite. In Kyaikhto, the common mineralogy associated with gold mineralization is pyrite, chalcopyrite, sphalerite, galena, pyrrhotite, arsenopyrite, marcasite, magnetite, hematite, ankerite, calcite, chlorite, epidote, albite, and sericite. At Shwetagun, the mineralization occurred at a varying temperature from 250 to 335°C, with a salinity range from 0.2 to 4.6 wt% NaCl equivalent. The Kyaikhto gold district was formed from aqueous–carbonic ore fluids of temperatures between 242 and 376°C, low to medium salinity (<11.8 wt% NaCl equivalent), and low CO2 content. The ore-forming processes of the Shwetagun deposit in the Modi Taung-Nankwe gold district and the Kyaikhto gold district are remarkably comparable to those of the mesozonal orogenic gold systems.


2021 ◽  
Vol 82 (3) ◽  
pp. 46-48
Author(s):  
Aleksandar Gadzhalov ◽  
Irina Marinova

This short communication presents preliminary data on а wall rock alteration in part of the Sarnak epithermal gold deposit based on host rock samples from drill hole cores. Methods used are powder X-ray diffraction as well as optical and scanning electron microscopy. The most pronounced alterations related to the epithermal mineralization are vein silicification, adularization and pyritization.


Author(s):  
Pan Qu ◽  
Wubin Yang ◽  
Hecai Niu ◽  
Ningbo Li ◽  
Dan Wu

Porphyry deposits are the main source for global Cu and Mo production. The generation of hydrous silicate magmas and subsequent separation of volatile-rich magmatic fluids with hydrothermal alteration are significant processes leading to the formation of porphyry deposits. However, a specific understanding of these processes has been limited by a lack of direct mineralogical records in the evolving magmatic-hydrothermal system. In this paper, we present an integrated textural and geochemical investigation on apatite from the giant Daheishan porphyry Mo deposit in NE China, illustrating that apatite can be a potential recorder of the magmatic-hydrothermal evolution of porphyry systems. Apatite from the ore-forming porphyry displays distinctive core-rim textures, with melt inclusions in the resorption cores (Type-A1) and co-existing of melt and fluid inclusions in the euhedral rims (Type-A2), indicating a magmatic-hydrothermal origin of apatite. This is also supported by both chemical and isotopic compositions obtained by in situ analyses using laser ablation−inductively coupled plasma−mass spectrometry (LA-ICP-MS) and LA-multi collector-ICP-MS. The late Type-A2 apatite is relatively enriched in incompatible elements, such as rare earth elements (REE) and Th, but slightly depleted in fluid-mobile elements such as Na and S, compared to the early Type-A1 apatite. Relatively homogeneous (87Sr/86Sr)i ratios (0.70436−0.70504) of the Type-A1 and Type-A2 apatites indicate that they were formed in a relatively closed system without detectable contamination. Meanwhile, some apatite in the wall rock (biotite granodiorite) shows characteristics of secondary altered textures, resulting from the intensive alteration by hydrothermal fluids exsolved from the porphyry system. Apatite trapped in mineral phenocrysts of the wall rock is usually unaltered (Type-B1 apatite), with clear oscillatory growth zones in cathodoluminescence (CL) images. In contrast, the intergranular apatite is commonly altered (Type-B2 apatite), with chaotic zoning in CL images, abundant micro-fractures and secondary fluid inclusions. Compositionally, the Type-B2 apatite shows notable tetrad REE patterns, relatively lower light-REE and S contents, and elevated 147Sm/144Nd ratios compared to the Type-B1 apatite. LA-ICP-MS U-Pb dating yields a lower intercept age of 171.4 ± 2.3 Ma for Type-B2, which is consistent with the age of 171.5 ± 2.4 Ma for Type-A2, but is notably younger than the Type-B1 apatite (175.5 ± 1.3 Ma). It is suggested that the Type-B2 apatite has been significantly reset by hydrothermal fluids exsolved from the porphyry system. Therefore, we conclude that the textures and geochemistry of apatite in porphyry systems can be used as a potential proxy for recording fluid exsolution and hydrothermal alteration processes.


Geosphere ◽  
2021 ◽  
Author(s):  
V. Isava ◽  
M. Grove ◽  
J.B. Mahoney ◽  
J.W. Haggart

Detrital K-feldspar 40Ar/39Ar thermochronology was conducted on clastic sedimentary rock samples collected from northern exposures of the Upper Cretaceous Nanaimo Group on Vancouver Island and adjacent Gulf Islands of British Columbia to constrain the denudation history of the local Coast Mountains batholith source region and determine the origin of extraregional sediment supplied to the basin. Strata of the northern Nanaimo Group deposited between 86 and 83 Ma (Comox and Extension formations) exhibit a 130–85 Ma age distribution of detrital K-feldspar 40Ar/39Ar ages that lack age maxima. These are interpreted to have been sourced from the southwestern Coast Mountains batholith. Younger strata deposited between 83 and 72 Ma (Cedar District and De Courcy formations) yield a broader age range (150–85 Ma) with an age maximum near the depositional age. These results indicate focused denudation of deeper-seated rocks east of the Harrison Lake fault. The youngest units deposited after 72 Ma (Geoffrey, Spray, and Gabriola formations) primarily yield younger than 75 Ma detrital K-feldspar ages with pronounced age maxima near the depositional age. This sediment was sourced extraregionally relative to the Coast Mountains batholith. We sought to constrain the origin of the extra-regional sediment by measuring the thermal histories of 74 samples of basement rocks from throughout the Pacific Northwest, and by compiling a database of over 2400 biotite 40Ar/39Ar and K/Ar cooling ages from predominantly Cretaceous batholiths along the western North American margin. This analysis focused upon two previously proposed source regions: the Idaho batholith and the Mojave-Salina margin of southern California. The Nanaimo detrital K-feldspar 40Ar/39Ar age distributions favor the peraluminous Late Cretaceous Idaho batholith and its Proterozoic Belt-Purcell Supergroup sedimentary wall rock as the more likely source of the extraregional sediment and disfavor the Baja–British Columbia hypothesis for 2000–4000-km-scale translation of rocks along the margin during the Late Cretaceous.


2021 ◽  
Vol 13 (21) ◽  
pp. 4250
Author(s):  
Jordi Mahardika Puntu ◽  
Ping-Yu Chang ◽  
Ding-Jiun Lin ◽  
Haiyina Hasbia Amania ◽  
Yonatan Garkebo Doyoro

We aim to develop a comprehensive tunnel lining detection method and clustering technique for semi-automatic rebar identification in order to investigate the ten tunnels along the South-link Line Railway of Taiwan (SLRT). We used the Ground Penetrating Radar (GPR) instrument with a 1000 MHz antenna frequency, which was placed on a versatile antenna holder that is flexible to the tunnel’s condition. We called it a Vehicle-mounted Ground Penetrating Radar (VMGPR) system. We detected the tunnel lining boundary according to the Fresnel Reflection Coefficient (FRC) in both A-scan and B-scan data, then estimated the thinning lining of the tunnels. By applying the Hilbert Transform (HT), we extracted the envelope to see the overview of the energy distribution in our data. Once we obtained the filtered radargram, we used it to estimate the Two-dimensional Forward Modeling (TDFM) simulation parameters. Specifically, we produced the TDFM model with different random noise (0–30%) for the rebar model. The rebar model and the field data were identified with the Hierarchical Agglomerative Clustering (HAC) in machine learning and evaluated using the Silhouette Index (SI). Taken together, these results suggest three boundaries of the tunnel lining i.e., the air–second lining boundary, the second–first lining boundary, and the first–wall rock boundary. Among the tunnels that we scanned, the Fangye 1 tunnel is the only one in category B, with the highest percentage of the thinning lining, i.e., 13.39%, whereas the other tunnels are in category A, with a percentage of the thinning lining of 0–1.71%. Based on the clustered radargram, the TDFM model for rebar identification is consistent with the field data, where k = 2 is the best choice to represent our data set. It is interesting to observe in the clustered radargram that the TDFM model can mimic the field data. The most striking result is that the TDFM model with 30% random noise seems to describe our data well, where the rebar response is rough due to the high noise level on the radargram.


Geology ◽  
2021 ◽  
Author(s):  
Jussi S. Heinonen ◽  
Frank J. Spera ◽  
Wendy A. Bohrson

Some geochemical models for basaltic and more primitive rocks suggest that their parental magmas have assimilated tens of weight percent of crustal silicate wall rock. But what are the thermodynamic limits for assimilation in primitive magmas? We pursue this question quantitatively using a freely available thermodynamic tool for phase equilibria modeling of open magmatic systems—the Magma Chamber Simulator (https://mcs.geol.ucsb.edu)—and focus on modeling assimilation of wall-rock partial melts, which is thermodynamically more efficient compared to bulk assimilation of stoped wall-rock blocks in primitive igneous systems. In the simulations, diverse komatiitic, picritic, and basaltic parental magmas assimilate progressive partial melts of preheated average lower, middle, and upper crust in amounts allowed by thermodynamics. Our results indicate that it is difficult for any subalkaline primitive magma to assimilate more than 20–30 wt% of upper or middle crust before evolving to compositions with higher SiO2 than a basaltic magma (52 wt%). On the other hand, typical komatiitic magmas have thermodynamic potential to assimilate as much as their own mass (59–102 wt%) of lower crust and retain a basaltic composition. The compositions of the parental melt and the assimilant heavily influence both how much assimilation is energetically possible in primitive magmas and the final magma composition given typical temperatures. These findings have important implications for the role of assimilation in the generation and evolution of, e.g., ultramafic to mafic trans-Moho magmatic systems, siliceous high-Mg basalts, and massif-type anorthosites.


2021 ◽  
Author(s):  
Pan Qu ◽  
Wubin Yang

Figure S1: Harker diagrams illustrating major elemental variations of the porphyry and wall rock. QGP—Qiancuoluo granodioritic porphyry; QBG—Qiancuoluo biotite granodiorite; Figure S2: (a) Chondrite-normalized REE patterns and (b) primitive mantle (PM)-normalized spider diagrams of the porphyry and wall rock. Normalizing values are taken from S. Sun and McDonough (1989); Table S1: Whole-rock major and trace element compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG) granites; Table S2: Whole-rock Sr-Nd compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S3: Apatite major and trace elements (ppm) of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S4: Apatite Sr and Nd isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S5: Apatite U-Pb isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG).


2021 ◽  
Author(s):  
Pan Qu ◽  
Wubin Yang

Figure S1: Harker diagrams illustrating major elemental variations of the porphyry and wall rock. QGP—Qiancuoluo granodioritic porphyry; QBG—Qiancuoluo biotite granodiorite; Figure S2: (a) Chondrite-normalized REE patterns and (b) primitive mantle (PM)-normalized spider diagrams of the porphyry and wall rock. Normalizing values are taken from S. Sun and McDonough (1989); Table S1: Whole-rock major and trace element compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG) granites; Table S2: Whole-rock Sr-Nd compositions of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S3: Apatite major and trace elements (ppm) of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S4: Apatite Sr and Nd isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG); Table S5: Apatite U-Pb isotope data of the Qiancuoluo granodioritic porphyry (QGP) and Qiancuoluo biotite granodiorite (QBG).


Sign in / Sign up

Export Citation Format

Share Document