oxidative aging
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 130)

H-INDEX

32
(FIVE YEARS 6)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 365
Author(s):  
Manuel J. Valcárcel-Muñoz ◽  
María Guerrero-Chanivet ◽  
María del Carmen Rodríguez-Dodero ◽  
María de Valme García-Moreno ◽  
Dominico A. Guillén-Sánchez

Fino and Amontillado are Sherry wines, produced in Marco de Jerez area (southern Spain), and aged in Criaderas y Solera system. Fino Sherry wine follows a biological aging process, under a veil of flor yeasts, while Amontillado Sherry wine shares the same biological aging firstly, followed by oxidative aging, which gives them special features. Organic acids, esters, higher alcohols, phenolic compounds and total dry extract of Sherries evolve during aging due to evaporation processes, physical-chemical reactions, wood contributions and microbiological activity. During aging, Sherry wines improve their organoleptic profile, as could be proved in the tasting sessions. Hierarchical Cluster Analysis and Factor Analysis with factor extraction using Principal Components of Sherry wines studied were carried out and natural groupings of the wines according to the type of aging and their age were observed. A strong correlation between the parameters analyzed and the aging of each wine has been seen in the Multiple Linear Regression studies, establishing two different models, one for each type of Sherry wine, that, with only four of all the variables studied estimated the wine age with more than 99% of confidence. This constitutes a useful tool to control the age of these Sherry wines in the winery.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 226
Author(s):  
Jinsong Yang ◽  
Weitao Lou

The effects of oxidative aging on the static and dynamic properties of nitrile rubber at the molecular scale were investigated by molecular dynamics simulation. The aged nitrile rubber models were constructed by introducing hydroxyl groups and carbonyl groups into rubber molecular chains to mimic oxidative aging. The static and dynamic properties of the unaged and aged nitrile rubber under different conditions were evaluated by mean square displacement, self-diffusion coefficients, hydrogen bond, fractional free volume, radial distribution function, cohesive energy density and solubility parameter. The results show that the elevated temperature intensified significantly the mobility of rubber molecular chains and fractional free volume, while the compressive strain displayed the opposite effect resulting in packing and rearrangement of rubber chains. The introduction of hydroxyl groups and carbonyl groups enhanced the polarity, intermolecular interactions, the volume and rigidity of molecular chains, implying weaker mobility of molecular chains as compared to unaged models. The compressive strain and oxidative aging both decreased the fractional free volume, which inhibited gaseous and liquid diffusion into the rubber materials, and slowed down the oxidative aging rate. This study provides insights to better understand the effect of molecular changes due to oxidative aging on the structural and dynamic properties of rubber materials at the molecular level.


2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Zuzhong Li ◽  
Huijie Liu ◽  
Weixi Chen ◽  
Yuan Li ◽  
Zepeng Zhao ◽  
...  

Nanoscale ◽  
2022 ◽  
Author(s):  
Shinya Masuda ◽  
Shinjiro Takano ◽  
Seiji Yamazoe ◽  
Tatsuya Tsukuda

Synthesis of an atomically precise Au25 cluster catalyst was attempted by long-term, low-temperature pretreatment of Au25(BaET)18 (BaET-H = 2-(Boc-amino)ethanethiol) on various double metal hydroxide (DMH) supports. X-ray absorption fine structure...


2021 ◽  
pp. 009524432110635
Author(s):  
Gislaine Hermenegildo ◽  
Nayrim B Guerra ◽  
Marcelo Giovanela ◽  
Janaina da Silva Crespo ◽  
Larissa N Carli

The effects of three curing systems on rheometric, morphological, physical-mechanical, thermal, and dynamic properties of ethylene–propylene–diene monomer (EPDM) composites was investigated. The influence of thermo-oxidative aging on crosslink density and physical-mechanical properties was studied. Based on a standard composition for application at high temperatures, EPDM formulations with semi-efficient vulcanization systems (ES), efficient vulcanization systems (ED), and peroxide curing systems (EP) were prepared. Experimental results indicated that EPDM compounds cured with efficient vulcanization systems exhibit the highest scorch time with an intermediate maximum torque value at 150°C. The filler dispersion in the elastomeric matrix was greater than 94%; however, the ED formulation showed a more pronounced decrease, with the increase in deformation indicating a greater filler–filler interaction. In comparison with those cured with peroxide and semi-efficient systems, EPDM formulations cured with an efficient system presented better thermal resistance and the crosslink density was sufficient to maintain the mechanical integrity, leading to an intermediate hardness value, tensile strength, modulus, and greater elongation at breaking. In summary, the results indicated that the efficient curing system was the most appropriate to be used in the envelope’s manufacture, due to the better performance of the mechanical properties associated with the better resistance to thermal aging.


2021 ◽  
Author(s):  
Behzad Behnia

This chapter focuses on various applications of acoustic emissions (AE) technique in evaluation of cracking in asphalt pavements including (1) assessment of low-temperature cracking of asphalt binders and mixtures and (2) quantitative characterization of rejuvenators’ efficiency in restoring aged asphalt pavements to their crack-resistant state. The AE-based embrittlement temperature results of 24 different asphalt materials consisting of eight different binders, each at three oxidative aging levels are presented. Results show that embrittlement temperatures correlated well with corresponding bending beam rheometer (BBR-based) critical cracking temperatures with R2 = 0.85. This chapter also presents application of AE for evaluation of rejuvenators’ efficiency on asphalt materials at various oxidative aging levels. The Geiger’s iterative source location method was employed to accurately determine embrittlement temperatures throughout the thickness of rejuvenator-treated asphalt samples. Results showed that the low temperature cracking properties of oxidative aged materials after 2 weeks of dwell time of rejuvenator have been recuperated. Moreover, it was observed that cracking characteristics of aged asphalt 6–8 weeks after applying rejuvenator far exceeded that of the virgin materials. The promising results suggest that the AE technique can be considered as a viable approach for the assessment of low temperature behavior of asphalt pavements.


Author(s):  
Ruxin Jing ◽  
Panos Apostolidis ◽  
Xueyan Liu ◽  
Sandra Erkens ◽  
Tom Scarpas

Sign in / Sign up

Export Citation Format

Share Document