donor ligands
Recently Published Documents


TOTAL DOCUMENTS

2476
(FIVE YEARS 233)

H-INDEX

75
(FIVE YEARS 9)

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Tim Pruessmann ◽  
Peter Nagel ◽  
Laura Simonelli ◽  
David Batchelor ◽  
Robert Gordon ◽  
...  

N-donor ligands such as n-Pr-BTP [2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine] preferentially bind trivalent actinides (An3+) over trivalent lanthanides (Ln3+) in liquid–liquid separation. However, the chemical and physical processes responsible for this selectivity are not yet well understood. Here, an explorative comparative X-ray spectroscopy and computational (L 3-edge) study for the An/Ln L 3-edge and the N K-edge of [An/Ln(n-Pr-BTP)3](NO3)3, [Ln(n-Pr-BTP)3](CF3SO3)3 and [Ln(n-Pr-BTP)3](ClO4)3 complexes is presented. High-resolution X-ray absorption near-edge structure (HR-XANES) L 3-edge data reveal additional features in the pre- and post-edge range of the spectra that are investigated using the quantum chemical codes FEFF and FDMNES. X-ray Raman spectroscopy studies demonstrate the applicability of this novel technique for investigations of liquid samples of partitioning systems at the N K-edge.


2021 ◽  
Author(s):  
◽  
Ryan James Schwamm

<p>The work presented in this thesis is divided into two parts, both of which investigate the chemistry of main group elements supported by N,N'-donor ligands.  Part 1 investigates the use of Mg(mesC{NCy}₂)(N{SiMe₃}₂)(THF) (mes = 2,4,6- Me₃C₆H₃, Cy = C₆H₁₁) as a pre-catalyst for the coupling of terminal acetylenes to carbodiimides. A catalytic cycle for the reaction is proposed, based on a series of stoichiometric reactions. Ligand redistribution via Schlenk equilibria is a prominent feature of the proposed catalytic cycle. The scope of catalysis was also investigated, indicating a strong dependence on the sterics and electronics of both the carbodiimide and the terminal acetylene. Investigation of other magnesium species identified other pathways into the catalytic cycle.  Part 2 explores the derivitisation of Bi(Me₂Si{NAr})Cl (Ar = 2,6-i-Pr₂C₆H₃) to form a number of novel bismuth(III) species of the general formula Bi(Me₂Si{NAr})X (X = alkyl, aryl, amide, aryloxide, phosphide). In addition, a number of cationic bismuth species have been isolated from the reaction of Bi(Me₂Si{NAr})Cl with ECl₃ (E = Al, Ga). Preliminary investigations reveal that the amide and aryloxide derivatives are active as initiators for the ring-opening polymerisation of lactide and ε-caprolactone. A number of bismuth(III) compounds bearing the related di(amido)ether ligands [O(Me₂Si{NAr})₂]²⁻ have also been synthesised.</p>


2021 ◽  
Author(s):  
◽  
Ryan James Schwamm

<p>The work presented in this thesis is divided into two parts, both of which investigate the chemistry of main group elements supported by N,N'-donor ligands.  Part 1 investigates the use of Mg(mesC{NCy}₂)(N{SiMe₃}₂)(THF) (mes = 2,4,6- Me₃C₆H₃, Cy = C₆H₁₁) as a pre-catalyst for the coupling of terminal acetylenes to carbodiimides. A catalytic cycle for the reaction is proposed, based on a series of stoichiometric reactions. Ligand redistribution via Schlenk equilibria is a prominent feature of the proposed catalytic cycle. The scope of catalysis was also investigated, indicating a strong dependence on the sterics and electronics of both the carbodiimide and the terminal acetylene. Investigation of other magnesium species identified other pathways into the catalytic cycle.  Part 2 explores the derivitisation of Bi(Me₂Si{NAr})Cl (Ar = 2,6-i-Pr₂C₆H₃) to form a number of novel bismuth(III) species of the general formula Bi(Me₂Si{NAr})X (X = alkyl, aryl, amide, aryloxide, phosphide). In addition, a number of cationic bismuth species have been isolated from the reaction of Bi(Me₂Si{NAr})Cl with ECl₃ (E = Al, Ga). Preliminary investigations reveal that the amide and aryloxide derivatives are active as initiators for the ring-opening polymerisation of lactide and ε-caprolactone. A number of bismuth(III) compounds bearing the related di(amido)ether ligands [O(Me₂Si{NAr})₂]²⁻ have also been synthesised.</p>


Sign in / Sign up

Export Citation Format

Share Document