flow paths
Recently Published Documents


TOTAL DOCUMENTS

1034
(FIVE YEARS 263)

H-INDEX

55
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Ziyan Li ◽  
Derek Elsworth ◽  
Chaoyi Wang

Abstract Fracturing controls rates of mass, chemical and energy cycling within the crust. We use observed locations and magnitudes of microearthquakes (MEQs) to illuminate the evolving architecture of fractures reactivated and created in the otherwise opaque subsurface. We quantitatively link seismic moments of laboratory MEQs to the creation of porosity and permeability at field scale. MEQ magnitudes scale to the slipping patch size of remanent fractures reactivated in shear - with scale-invariant roughnesses defining permeability evolution across nine decades of spatial volumes – from centimeter to decameter scale. This physics-inspired seismicity-permeability linkage enables hybrid machine learning (ML) to constrain in-situ permeability evolution at verifiable field-scales (~10 m). The ML model is trained on early injection and MEQ data to predict the dynamic evolution of permeability from MEQ magnitudes and locations, alone. The resulting permeability maps define and quantify flow paths verified against ground truths of permeability.


2022 ◽  
Author(s):  
Günter Blöschl

Abstract. This article reviews river flood generation processes and flow paths across space scales. The scale steps include the pore, profile, hillslope, catchment, regional and continental scales, representing a scale range of a total of 10 orders of magnitude. Although the processes differ between the scales, there are notable similarities. At all scales, there are media patterns that control the flow of water, and are themselves influenced by the flow of water. The processes are therefore not spatially random (as in thermodynamics) but organised, and preferential flow is the rule rather than the exception. Hydrological connectivity, i.e. the presence of coherent flow paths, is an essential characteristic at all scales. There are similar controls on water flow and thus on flood generation at all scales, however, with different relative magnitudes. Processes at lower scales affect flood generation at the larger scales not simply as a multiple repetition of pore scale processes, but through interactions, which cause emergent behaviour of process patterns. For this reason, when modelling these processes, the scale transitions need to be simplified in a way that reflects the relevant structures (e.g. connectivity) and boundary conditions (e.g. groundwater table) at each scale. In conclusion, it is argued that upscaling as the mere multiple application of small scale process descriptions will not capture the larger scale patterns of flood generation. Instead, there is a need to learn from observed patterns of flood generation processes at all spatial scales.


2022 ◽  
Author(s):  
Laura Piho ◽  
Andreas Alexander ◽  
Maarja Kruusmaa

Abstract. Glacier hydrology describes water movement over, through and under glaciers and ice sheets. Water reaching the ice bed influences ice motion and ice dynamical models, therefore requiring a good understanding of glacier hydrology, particularly water pressures and pathways. However, as in situ observations are sparse and methods for direct observations of water pathways and internal pressures are lacking, our understanding of the aforementioned pathways and pressure remains limited. Here, we present a method that allows the reconstruction of planar subsurface water flow paths and spatially reference water pressures. We showcase this method by reconstructing the 2D topology and the water pressure distribution of an englacial channel in Austre Brøggerbreen (Svalbard). The approach uses inertial measurements from submersible sensing drifters and reconstructs the flow path between given start and end coordinates. Validation on a supraglacial channel shows an average length error of 3.9 m (5.3 %). At the englacial channel, the average length error is 107 m (11.6 %) and the average pressure error 3.4 hPa (0.3 %). Our method allows mapping sub- and englacial flow paths and the pressure distribution within, thereby facilitating hydrological model validation. Further, our method also allows the reconstruction of other, previously unexplored, subsurface fluid flow paths.


2021 ◽  
Author(s):  
Colin A. Hale ◽  
Gregory T. Carling ◽  
Stephen T. Nelson ◽  
Diego P. Fernandez ◽  
Paul D. Brooks ◽  
...  

2021 ◽  
Author(s):  
Osman H. Hamid ◽  
Reza Sanee ◽  
Gbenga Folorunso Oluyemi

Abstract Fracture characterization, including permeability and deformation due to fluid flow, plays an essential role in hydrocarbon production during the development of naturally fractured reservoirs. The conventional way of characterization of the fracture is experimental, and modeling approaches. In this study, a conceptual model will be developed based on the structural style to study the fracture distributions, the influence of the fluid flow and geomechanics in the fracture conductivity, investigate the stress regime in the study area. Understanding the fracture properties will be conducted by studying the fracture properties from the core sample, image log interpretation. 3D geomechanical models will be constructed to evaluate the fluid flow properties; the models consider the crossflow coefficient and the compression coefficient. According to the model results, the fracture permeability decreases with increasing effective stress. The degree of decline is related to the crossflow coefficient and the compression coefficient. Most of these reservoirs are mainly composed of two porosity systems for fluid flow: the matrix component and fractures. Therefore, fluid flow path distribution within a naturally fractured reservoir depends on several features related to the rock matrix and fracture systems' properties. The main element that could help us identify the fluid flow paths is the critical stress analysis, which considers the in-situ stress regime model (in terms of magnitude and direction) and the spatial distributions of natural fractures fluid flow path. The critical stress requires calculating the normal and shear stress in each fracture plane to evaluate the conditions for critical and non-critical fractures. Based on this classification, some fractures can dominate the fluid-flow paths. To perform the critical stress analysis, fracture characterization and stress analysis were described using a 3D stress tensor model capturing the in-situ stress direction and magnitude applied to a discrete fracture model, identifying the fluid flow paths along the fractured reservoir. The results show that in-situ stress rotation observed in the breakouts or drilling induce tensile fractures (DITFs) interpreted from borehole images. The stress regime changes are probably attributed to some influence of deeply seated faults under the studied sequence. the flow of water-oil ratio through intact rock and fractures with/without imbibition was modeled based on the material balance based on preset conceptual reservoir parameters to investigate the water-oil ratio flow gradients


Author(s):  
Mario Pirastru ◽  
Massimo Iovino ◽  
Hassan Awada ◽  
Roberto Marrosu ◽  
Simone Di Prima ◽  
...  

Lateral saturated soil hydraulic conductivity, Ks,l, is the soil property governing subsurface water transfer in hillslopes, and the key parameter in many numerical models simulating hydrological processes both at the hillslope and catchment scales. Likewise, the hydrological connectivity of lateral flow paths plays a significant role in determining the intensity of the subsurface flow at various spatial scales. The objective of the study is to investigate the relationship between Ks,l and hydraulic connectivity at the hillslope spatial scale. Ks,l was determined by the subsurface flow rates intercepted by drains, and by water table depths observed in a well network. Hydraulic connectivity of the lateral flow paths was evaluated by the synchronicity among piezometric peaks, and between the latter and the peaks of drained flow. Soil moisture and precipitation data were used to investigate the influence of the transient hydrological soil condition on connectivity and Ks,l. It was found that the higher was the synchronicity of the water table response between wells, the lower was the time lag between the peaks of water levels and those of the drained subsurface flow. Moreover, the most synchronic water table rises determined the highest drainage rates. The relationships between Ks,l and water table depths were highly non-linear, with a sharp increase of the values for water table levels close to the soil surface. Estimated Ks,l values for the full saturated soil were in the order of thousands of mm h-1, suggesting the activation of macropores in the root zone. The Ks,l values determined at the peak of the drainage events were correlated with the indicators of synchronicity. The sum of the antecedent soil moisture and of the precipitation was correlated with the indicators of connectivity and with Ks,l. We suggest that, for simulating realistic processes at the hillslope scale, the hydraulic connectivity could be implicitly considered in hydrological modelling through an evaluation of Ks,l at the same spatial scale.


Author(s):  
Karsten Osenbrück ◽  
Eva Blendinger ◽  
Carsten Leven ◽  
Hermann Rügner ◽  
Michael Finkel ◽  
...  

AbstractNitrate reduction constitutes an important natural mechanism to mitigate the widespread and persistent nitrate contamination of groundwater resources. In fractured aquifers, however, the abundance and accessibility of electron donors and their spatial correlation with groundwater flow paths are often poorly understood. In this study, the nitrate reduction potential of a fractured carbonate aquifer in the Upper Muschelkalk of SW Germany was investigated, where denitrification is due to the oxidation of ferrous iron and reduced sulfur. Petrographical analyses of rock samples revealed concentrations of syn-sedimentary and diagenetically formed pyrite ranging from 1 to 4 wt.% with only small differences between different facies types. Additional ferrous iron is available in saddle dolomites (up to 2.6 wt.%), which probably were formed by tectonically induced percolation of low-temperature hydrothermal fluids. Borehole logging at groundwater wells (flowmeter, video, gamma) indicates that most groundwater flow occurs along karstified bedding planes partly located within dolomites of the shoal and backshoal facies. The high porosity (15–30%) of these facies facilitates molecular diffusive exchange of solutes between flow paths in the fractures and the reactive minerals in the pore matrix. The high-porosity facies together with hydraulically active fractures featuring pyrite or saddle dolomite precipitates constitute the zones of highest nitrate reduction potential within the aquifer. Model-based estimates of electron acceptor/donor balances indicate that the nitrate reduction potential protecting water supply wells increases with increasing porosity of the rock matrix and decreases with increasing hydraulic conductivity (or effective fracture aperture) and spacing of the fracture network.


2021 ◽  
Vol 20 (3) ◽  
pp. 24-36
Author(s):  
A. D. Alendar ◽  
A. N. Grunin ◽  
M. V. Siluyanova

The work contains the results of a study of the basic design concepts of advanced engines for supersonic civil aircraft, carried out in order to make a forecast for the development of aviation technology, taking into account the experience of foreign designers. Engine designs are presented that are considered to be the most rational ones from the point of view of achieving high technical and economic parameters in the range of cruise Mach numbers from 1.2 to 5. Advantages and disadvantages of various engine designs, as well as issues of engine regulation at different flight modes, are discussed. The parameters of some engines being developed and studied at present for supersonic civil aircraft are presented. The analysis of the designs shows that an increase in the cruise Mach number leads to a complication of engine designs in the direction of an increase in the number of controlled elements, the number of working fluid flow paths, a complication of the architecture of turbomachines, as well as in the direction of using combined schemes and alternative fuels. The aspiration to meet new reinforced ecological requirements through the use of new, complex engine designs that differ significantly from traditional gas turbine engines will inevitably entail additional technical risks due to the insufficient level of technological readiness of most of the new controlled units.


Sign in / Sign up

Export Citation Format

Share Document