leaf economic spectrum
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 16)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 4 ◽  
Author(s):  
Matthew J. Hecking ◽  
Jenna M. Zukswert ◽  
John E. Drake ◽  
Martin Dovciak ◽  
Julia I. Burton

Trait-based analyses provide powerful tools for developing a generalizable, physiologically grounded understanding of how forest communities are responding to ongoing environmental changes. Key challenges lie in (1) selecting traits that best characterize the ecological performance of species in the community and (2) determining the degree and importance of intraspecific variability in those traits. Recent studies suggest that globally evident trait correlations (trait dimensions), such as the leaf economic spectrum, may be weak or absent at local scales. Moreover, trait-based analyses that utilize a mean value to represent a species may be misleading. Mean trait values are particularly problematic if species trait value rankings change along environmental gradients, resulting in species trait crossover. To assess how plant traits (1) covary at local spatial scales, (2) vary across the dominant environmental gradients, and (3) can be partitioned within and across taxa, we collected data on 9 traits for 13 tree species spanning the montane temperate—boreal forest ecotones of New York and northern New England. The primary dimension of the trait ordination was the leaf economic spectrum, with trait variability among species largely driven by differences between deciduous angiosperms and evergreen gymnosperms. A second dimension was related to variability in nitrogen to phosphorous levels and stem specific density. Levels of intraspecific trait variability differed considerably among traits, and was related to variation in light, climate, and tree developmental stage. However, trait rankings across species were generally conserved across these gradients and there was little evidence of species crossover. The persistence of the leaf economics spectrum in both temperate and high-elevation conifer forests suggests that ecological strategies of tree species are associated with trade-offs between resource acquisition and tolerance, and may be quantified with relatively few traits. Furthermore, the assumption that species may be represented with a single trait value may be warranted for some trait-based analyses provided traits were measured under similar light levels and climate conditions.


2021 ◽  
Author(s):  
◽  
Sharada Paudel

<p>The phenologies of flowers, fruits and leaves can have profound implications for plant community structure and function. Despite this only a few studies have documented fruit and flower phenologies in New Zealand while there are even fewer studies on leaf production and abscission phenologies. To address this limitation, I measured phenological patterns in leaves, flowers and fruits in 12 common forest plant species in New Zealand over two years. All three phenologies showed significant and consistent seasonality with an increase in growth and reproduction around the onset of favourable climatic conditions; flowering peaked in early spring, leaf production peaked in mid-spring and fruit production peaked in mid-summer coincident with annual peaks in temperature and photoperiodicity. Leaf abscission, however, occurred in late autumn, coincident with the onset of less productive environmental conditions. I also investigated differences in leaf longevities and assessed how seasonal cycles in the timing of leaf production and leaf abscission times might interact with leaf mass per area (LMA) in determining leaf longevity. Leaf longevity was strongly associated with LMA but also with seasonal variation in climate. All 12 species produced leaves in spring and abscised leaves in autumn. Nevertheless, leaf longevity ranged from 6 months to 30 months among species, leading to several distinct leaf longevity categories (i.e. 6-7 months, 15-18 months and 27-30 months). Finally, I examined the relationship of leaf traits with flower and fruit traits and their relation to the global leaf economic spectrum (LES) that describes multivariate correlations between a combinations of key leaf traits. The results resonated with the patterns of leaf economic spectrum for New Zealand species and provided evidence for significant correlations between leaf and fruit traits, indicating that plants with long lived leaves and higher LMA produce fruits that take more time to develop, stay on the plant longer and have larger seed size. This study contributed to bridging the gap in our understanding of the relationship between vegetative and reproductive traits, it has increased our understanding of phenological patterns in New Zealand forests, and when viewed with earlier phenological studies, provides a first step towards understanding how New Zealand forest might respond to global climate change. In addition, the research illustrates how seasonality in climate can constrain the life times of leaves. In the context of global trait research culminating into the whole plant economics spectrum, this study provides clear evidence of leaf and fruit phenological and morphological trait associations. It helps to further our understanding of phenology, seasonality and plant trait relationships for some common tree species in New Zealand and presents some novel findings that provide a basis for future research.</p>


2021 ◽  
Author(s):  
◽  
Sharada Paudel

<p>The phenologies of flowers, fruits and leaves can have profound implications for plant community structure and function. Despite this only a few studies have documented fruit and flower phenologies in New Zealand while there are even fewer studies on leaf production and abscission phenologies. To address this limitation, I measured phenological patterns in leaves, flowers and fruits in 12 common forest plant species in New Zealand over two years. All three phenologies showed significant and consistent seasonality with an increase in growth and reproduction around the onset of favourable climatic conditions; flowering peaked in early spring, leaf production peaked in mid-spring and fruit production peaked in mid-summer coincident with annual peaks in temperature and photoperiodicity. Leaf abscission, however, occurred in late autumn, coincident with the onset of less productive environmental conditions. I also investigated differences in leaf longevities and assessed how seasonal cycles in the timing of leaf production and leaf abscission times might interact with leaf mass per area (LMA) in determining leaf longevity. Leaf longevity was strongly associated with LMA but also with seasonal variation in climate. All 12 species produced leaves in spring and abscised leaves in autumn. Nevertheless, leaf longevity ranged from 6 months to 30 months among species, leading to several distinct leaf longevity categories (i.e. 6-7 months, 15-18 months and 27-30 months). Finally, I examined the relationship of leaf traits with flower and fruit traits and their relation to the global leaf economic spectrum (LES) that describes multivariate correlations between a combinations of key leaf traits. The results resonated with the patterns of leaf economic spectrum for New Zealand species and provided evidence for significant correlations between leaf and fruit traits, indicating that plants with long lived leaves and higher LMA produce fruits that take more time to develop, stay on the plant longer and have larger seed size. This study contributed to bridging the gap in our understanding of the relationship between vegetative and reproductive traits, it has increased our understanding of phenological patterns in New Zealand forests, and when viewed with earlier phenological studies, provides a first step towards understanding how New Zealand forest might respond to global climate change. In addition, the research illustrates how seasonality in climate can constrain the life times of leaves. In the context of global trait research culminating into the whole plant economics spectrum, this study provides clear evidence of leaf and fruit phenological and morphological trait associations. It helps to further our understanding of phenology, seasonality and plant trait relationships for some common tree species in New Zealand and presents some novel findings that provide a basis for future research.</p>


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1066
Author(s):  
Yanzheng Yang ◽  
Le Kang ◽  
Jun Zhao ◽  
Ning Qi ◽  
Ruonan Li ◽  
...  

A trait-based approach is an effective way to quantify plant adaptation strategies in response to changing environments. Single trait variations have been well depicted before; however, multi-trait covariations and their roles in shaping plant adaptation strategies along aridity gradients remain unclear. The purpose of this study was to reveal multi-trait covariation characteristics, their controls and their relevance to plant adaptation strategies. Using eight relevant plant functional traits and multivariate statistical approaches, we found the following: (1) the eight studied traits show evident covariation characteristics and could be grouped into four functional dimensions linked to plant strategies, namely energy balance, resource acquisition, resource investment and water use efficiency; (2) leaf area (LA) together with traits related to the leaf economic spectrum, including leaf nitrogen content per area (Narea), leaf nitrogen per mass (Nmass) and leaf dry mass per area (LMA), covaried along the aridity gradient (represented by the moisture index, MI) and dominated the trait–environmental change axis; (3) together, climate, soil and family can explain 50.4% of trait covariations; thus, vegetation succession along the aridity gradient cannot be neglected in trait covariations. Our findings provide novel perspectives toward a better understanding of plant adaptations to arid conditions and serve as a reference for vegetation restoration and management programs in arid regions.


2021 ◽  
Vol 4 ◽  
Author(s):  
Dominica Harrison ◽  
J. Antonio Guzmán Q. ◽  
G. Arturo Sánchez-Azofeifa

The leaf economic spectrum describes a comprehensive framework of how the surrounding environment modulates leaf functional traits (LFT) and how these are associated between them. This framework has traditionally focused on physiological, chemical, and biomass assignation traits, but rarely in leaf anatomical traits. Here we compare leaf anatomical metrics and traits of 40 liana and tree species from two lowland tropical forests in Panama with contrasting rainfall regimes: Parque Natural Metropolitano (dry-forest) and Parque Nacional San Lorenzo (wet-forest). Then we evaluate how anatomical traits are associated with well-established LFTs. Anatomical metrics were collected from leaf cross-section images estimating the area, thickness, cell count, and size of the upper and lower epidermis and palisade and spongy mesophyll. Ratios between metrics were performed as potential anatomical traits to reduce the leaf size effect between species. Our results suggest that anatomical changes between life forms are associated with increases in the palisade area and thickness of trees in comparison with lianas, while anatomical changes between forest type species are related to increases in the spongy area and thickness of wet-forest species than dry-forest. These differences could be associated with the high photosynthetic rates of trees or the need to enhance the gas exchange in humid environments. Our results also suggest that anatomical traits are related to well-established LFT; however, the degree of association between them may depend on the life forms and forest type. For example, our results suggest that reductions in the palisade and spongy cell density are associated with increases in leaf mass area and maximum photosynthetic capacity, but this association was not observed when we compared life forms or forest types. The use of leaf anatomical information may facilitate to describe the mechanism that drives the leaf economy, improving our understanding of the resource allocation strategies embedded in functional groups.


2021 ◽  
Vol 48 (2) ◽  
pp. 231
Author(s):  
Yu-Mei Yan ◽  
Ze-Xin Fan ◽  
Pei-Li Fu ◽  
Hui Chen ◽  
Lu-Xiang Lin

Many studies focus on the relationships between plant functional traits and tree growth performances. However, little is known about the ontogenetic shifts of the relationships between functional traits and tree growth. This study examined associations between stem and leaf functional traits and growth rates and their ontogenetic shifts across 20 tropical tree species in a tropical seasonal rainforest in Xishuangbanna, south-west China. For each species, physiological active branches of individual trees belonged to three size classes (i.e. small, diameter at breast height (DBH) 5–10 cm; middle, DBH 10–20 cm; big, DBH &gt;20 cm) were sampled respectively. We measured 18 morphological and structural traits, which characterised plant hydraulic properties or leaf economic spectrum. Associations between diameter growth rates and functional traits were analysed across three size classes. Our results revealed that diameter growth rates of big-sized trees were mainly related to traits related to plant hydraulic efficiency (i.e. theoretical hydraulic conductivity (Ktheo) and leaf vein density (Dvein)), which suggests that the growth of large trees is limited mainly by their xylem water transport capacity. For middle-sized trees, growth rates were significantly related to traits representing leaf economic spectrum (i.e. specific leaf area (SLA), individual leaf mass (ILM), palisade thickness (PT) and spongy thickness (SP)). Diameter growth rates of small-sized trees were not correlated with hydraulic or leaf economic traits. Thus, the associations between tree growth rates and functional traits are size dependent. Our results suggest ontogenetic shift of functional traits which could potential contribute to different growth response to climate change.


Nitrogen ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 111-124 ◽  
Author(s):  
Thomas E. Marler

Plants that enter symbiotic relationships with nitrogen (N)-fixing microbes contribute some of their N to the community through leaf litter decomposition and mineralization processes. The speed of these processes varies greatly among tree species. Mesocosm methods were used to determine the speed of N and carbon (C) release from Cycas micronesica, Intsia bijuga, and Serianthes nelsonii leaf litter. Microcosm methods were used to determine soil respiration traits in soils containing the leaf litter. The speed of leaf litter N and C release during decomposition occurred in the order C. micronesica < I. bijuga < S. nelsonii. Soil carbon dioxide efflux was increased by adding leaf litter to incubation soils, and the increase was greatest for S. nelsonii and least for C. micronesica litter. Ammonium, nitrate, total N, organic C, and total C were increased by adding litter to incubation soils, and the differences among the species converged with incubation duration. The rate of increases in available N and decreases in organic C were greatest for S. nelsonii and least for C. micronesica litter. These findings indicate that S. nelsonii litter released N and C rapidly, C. micronesica litter released N and C slowly, and the leaf economic spectrum accurately predicted the differences.


2020 ◽  
Author(s):  
Gunnar Petter ◽  
Holger Kreft ◽  
Yongzhi Ong ◽  
Gerhard Zotz ◽  
Juliano Sarmento Cabral

AbstractTropical forests are the most diverse terrestrial ecosystems and home to numerous tree species with diverse ecological strategies competing for resources in space and time. Functional traits influence the ecophysiological performance of tree species, yet the relationship between traits and emergent long-term growth pattern is poorly understood. Here, we present a novel 3D forest stand model in which growth patterns of individual trees and forest stands are emergent properties of leaf traits. Individual trees are simulated as 3D functional-structural tree models (FSTMs), considering branches up to the second order and leaf dynamics at a resolution of one m3. Each species is characterized by a set of leaf traits that corresponds to a specific position on the leaf economic spectrum and determines light-driven carbon assimilation, respiration and mortality rates. Applying principles of the pipe model theory, these leaf scale-processes are coupled with within-tree carbon allocation, i.e., 3D tree growth emerges from low-level processes. By integrating these FSTMs into a dynamic forest stand model, we go beyond modern stand models to integrate structurally-detailed internal physiological processes with interspecific competition, and interactions with the environment in diverse tree communities. For model calibration and validation, we simultaneously compared a large number of emergent patterns at both the tree and forest levels in a pattern-oriented modeling framework. At the tree level, varying specific leaf area and correlated leaf traits determined the maximum height and age of a tree, as well as its size-dependent growth rate and shade tolerance. Trait variations along the leaf economic spectrum led to a continuous transition from fast-growing, short-lived and shade-intolerant to slow-growing, long-lived and shade-tolerant trees. These emerging patterns resembled well-known functional tree types, indicating a fundamental impact of leaf traits on long-term growth patterns. At the forest level, a large number of patterns taken from lowland Neotropical forests were reproduced, indicating that our forest model simulates structurally realistic forests over long time spans. Our ecophysiological approach improves the understanding of how leaf level processes scale up to the tree and the stand level, and facilitates the development of next-generation forest models for species-rich forests in which tree performance emerges directly from functional traits.


Oikos ◽  
2020 ◽  
Vol 129 (5) ◽  
pp. 740-752
Author(s):  
Mohammed Armani ◽  
Uromi M. Goodale ◽  
Tristan Charles‐Dominique ◽  
Kasey E. Barton ◽  
Xin Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document