rose bengal dye
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 2)

Microbiology ◽  
2022 ◽  
Vol 168 (1) ◽  
Author(s):  
Minghui Zhou ◽  
Yan Zhang ◽  
Yajun Chen ◽  
Fangyan Zhang ◽  
Daihu Yang

Aspergillus niger TF05 was applied to decolorize Rose Bengal dye. The effects of carbon source, nitrogen source, metal ion and spore concentration on Rose Bengal treatment with A. niger TF05 were studied. A Plackett–Burman design (PBD) and a uniform design (UD) were used to optimize the decolorization conditions of A. niger TF05 and enhance its decolorization effect. The mechanism of Rose Bengal decolorization by A. niger TF05 was examined by analysing degradation products via UV–visible light spectroscopy, IR spectroscopy and GC-MS. The best decolorization effect was achieved in the single factor test with glucose and ammonium chloride as carbon and nitrogen sources, respectively. Mg2+ was an essential ion that could improve the mould ball state and adsorption efficiency if the spore concentration was maintained at 106 spores ml–1. The optimal decolorization conditions obtained using the PBD and UD methods were 11.5 g l−1 glucose, 6.5 g l−1 ammonium chloride, 0.4 g l−1 magnesium sulphate, pH 5.8, 28 °C, 140 r.p.m. rotational speed, 0.18 g l−1 dye concentration, 0.5 ml of inocula and 120 h decolorization time. Under these conditions, the maximum decolorization rate was 106%. Spectral analysis suggested that the absorption peak of the product changed clearly after decolorization; GC-MS analysis revealed that the intermediate product tetrachlorophthalic anhydride formed after decolorization. The combined use of the PBD and UD methods can optimize multi-factor experiments. A. niger TF05 decolorized Rose Bengal during intracellular enzymatic degradation after adsorption.


2021 ◽  
Vol 332 ◽  
pp. 113055
Author(s):  
A.A. Salim ◽  
S.K. Ghoshal ◽  
M.S. Shamsudin ◽  
Muhammad Izz Rosli ◽  
M.S. Aziz ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. Murugadoss ◽  
D. Dinesh Kumar ◽  
M. Rajesh Kumar ◽  
N. Venkatesh ◽  
P. Sakthivel

AbstractHigh quality silver (Ag) decorated CeO2 nanoparticles were prepared by a facile one-step chemical method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), fourier transform infrared spectrometer (FT-IR), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), UV–Visible absorption (UV–Vis), photoluminescence (PL) and thermogravimetric analysis. The decoration of Ag on CeO2 surface was confirmed by XRD, EPR and HR-TEM analysis. Harmful textile pollutant Rose Bengal dye was degraded under sunlight using the novel Ag decorated CeO2 catalyst. It was found that great enhancement of the degradation efficiency for Ag/CeO2 compared to pure CeO2, it can be ascribed mainly due to decrease in its band gap and charge carrier recombination rate. The Ag/CeO2 sample exhibited an efficient photocatalytic characteristic for degrading RB under visible light irradiation with a high degradation rate of 96% after 3 h. With the help of various characterizations, a possible degradation mechanism has been proposed which shows the effect of generation of oxygen vacancies owing to the decoration of Ag on the CeO2 surface.


2021 ◽  
Vol 45 (4) ◽  
pp. 1876-1886
Author(s):  
A. Subalakshmi ◽  
B. Kavitha ◽  
A. Karthika ◽  
S. Nikhil ◽  
N. Srinivasan ◽  
...  

Mn, Zr co-doped Ag2O nanoparticles were blended through a wet chemical strategy, and the physicochemical properties of doped and co-doped silver oxide nanoparticles were characterized.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1151
Author(s):  
K. Jagajjanani Rao ◽  
Tarangini Korumilli ◽  
Akshaykumar KP ◽  
Stanisław Wacławek ◽  
Miroslav Černík ◽  
...  

We have fabricated ZnO nanoflake structures using degummed silk fibers as templates, via soaking and calcining the silk fibers bearing ZnO nanoparticles at 150 °C for 6 h. The obtained ZnO nanostructures were characterized using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and UV-vis and fluorescence spectroscopic analysis. The size (~500–700 nm) in length and thicknesses (~60 nm) of ZnO nanoflakes were produced. The catalysis performances of ZnO nanoflakes on silk fibers (ZnSk) via photo-degradation of naphthalene (93% in 256 min), as well as Rose Bengal dye removal (~1.7 mM g−1) through adsorption from aqueous solution, were practically observed. Further, ZnSk displayed superb antibacterial activity against the tested model gram-negative Escherichia coli bacterium. The produced ZnSk has huge scope to be used for real-world water contaminants remediation applications.


Sign in / Sign up

Export Citation Format

Share Document