state recognition
Recently Published Documents


TOTAL DOCUMENTS

664
(FIVE YEARS 272)

H-INDEX

26
(FIVE YEARS 8)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bu Chang

Heart rate monitoring is becoming more and more important in the development of modern health industry. At present, wireless sensor network equipment is mainly used to realize the real-time or periodic monitoring of human heart rate, so as to realize the health management of specific people. At the same time, the monitoring and analysis technology of heart rate is also widely used in special competitive sports. Through the real-time monitoring and analysis of athletes’ heart rate, we can feedback and analyze their corresponding competitive state in real time, so as to monitor the sudden state of athletes, and also provide a basis for the improvement of athletes’ later sports level. Based on this, this paper will use a single-chip microcomputer as the central data processing unit of the monitoring system at the hardware level, and inertial sensor and heart rate sensor at the sensor level. The system will design data acquisition module, motion positioning module, low-power module, athlete heart rate acquisition module, and motion state recognition module. Aiming at the low accuracy of traditional heart rate acceleration motion wireless sensor in competitive sports athletes’ heart rate recognition and motion state recognition, this paper innovatively proposes an athlete heart rate recognition algorithm based on acceleration signal, which extracts the frequency-domain characteristics of motion signal. The time-domain and time-frequency characteristics of athletes’ acceleration signal are used to realize the recognition of athletes’ sports state, and the power spectrum cancellation technology is used to realize the accurate detection of athletes’ heart rate. In order to verify the advantages of the hardware system and algorithm in this paper, three sports with quiet, dynamic, and random dynamic characteristics are selected for experimental verification. The experimental results show that the software algorithm proposed in this paper has obvious accuracy advantages in quiet and dynamic competitive sports compared with the traditional algorithm.


2021 ◽  
pp. 1-15
Author(s):  
Silvia Ceccacci

Driver behaviour recognition is of paramount importance for in-car automation assistance. It is widely recognized that not only attentional states, but also emotional ones have an impact on the safety of the driving behaviour. This research work proposes an emotion-aware in-car architecture where it is possible to adapt driver’s emotions to the vehicle dynamics, investigating the correlations between negative emotional states and driving performances, and suggesting a system to regulate the driver’s engagement through a unique user experience (e.g. using music, LED lighting) in the car cabin. The relationship between altered emotional states induced through auditory stimuli and vehicle dynamics is investigated in a driving simulator. The results confirm the need for both types of information to improve the robustness of the driver state recognition function and open up the possibility that auditory stimuli can modify driving performance somehow.


Author(s):  
ALA HAG ◽  
Dini Handayani ◽  
Maryam Altalhi ◽  
Thulasyammal Pillai ◽  
Teddy Mantoro ◽  
...  

Mental stress state recognition using electroencephalogram (EEG) signals for real-life applications needs a conventional wearable device. This requires an efficient number of EEG channels and an optimal feature set. The main objective of the study is to identify an optimal feature subset that can best discriminate mental stress states while enhancing the overall performance. Thus, multi-domain feature extraction methods were employed, namely, time domain, frequency domain, time-frequency domain, and network connectivity features, to form a large feature vector space. To avoid the computational complexity of high dimensional space, a hybrid feature selection (FS) method of minimum Redundancy Maximum Relevance with Particle Swarm Optimization and Support Vector Machine (mRMR-PSO-SVM) is proposed to remove noise, redundant, and irrelevant features and keep the optimal feature subset. The performance of the proposed method is evaluated and verified using four datasets, namely EDMSS, DEAP, SEED, and EDPMSC. To further consolidate, the effectiveness of the proposed method is compared with that of the state-of-the-art heuristic methods. The proposed model has significantly reduced the features vector space by an average of 70% in comparison to the state-of-the-art methods while significantly increasing overall detection performance.


2021 ◽  
Author(s):  
Zhihao Tan ◽  
Jiawei Shi ◽  
Rongjie Lv ◽  
Qingyuan Li ◽  
Jing Yang ◽  
...  

Cotton is one of the most economically important crops in the world. The fertility of male reproductive organs is a key determinant of cotton yield. The anther dehiscence or indehiscence directly determine the probability of fertilization in cotton. Thus, the rapid and accurate identification of cotton anther dehiscence status is important for judging anther growth status and promoting genetic breeding research. The development of computer vision technology and the advent of big data have prompted the application of deep learning techniques to agricultural phenotype research. Therefore, two deep learning models (Faster R-CNN and YOLOv5) were proposed to detect the number and dehiscence status of anthers. The single-stage model based on YOLOv5 has higher recognition efficiency and the ability to deploy to the mobile end. Breeding researchers can apply this model to terminals to achieve a more intuitive understanding of cotton anther dehiscence status. Moreover, three improvement strategies of Faster R-CNN model were proposed, the improved model has higher detection accuracy than YOLOv5 model. In addition, the percentage of dehiscent anther of randomly selected 30 cotton varieties were observed from cotton population under normal temperature and high temperature (HT) conditions through the integrated Faster R-CNN model and manual observation. The result showed HT varying decreased the percentage of dehiscent anther in different cotton lines, consistent with the manual method. Thus, this system can help us to rapid and accurate identification of HT-tolerant cotton.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Junhao Huang ◽  
Zhicheng Zhang ◽  
Guoping Xie ◽  
Hui He

Noncontact human-computer interaction has an important value in wireless sensor networks. This work is aimed at achieving accurate interaction on a computer based on auto eye control, using a cheap webcam as the video source. A real-time accurate human-computer interaction system based on eye state recognition, rough gaze estimation, and tracking is proposed. Firstly, binary classification of the eye states (opening or closed) is carried on using the SVM classification algorithm with HOG features of the input eye image. Second, rough appearance-based gaze estimation is implemented based on a simple CNN model. And the head pose is estimated to judge whether the user is facing the screen or not. Based on these recognition results, noncontact mouse control and character input methods are designed and developed to replace the standard mouse and keyboard hardware. Accuracy and speed of the proposed interaction system are evaluated by four subjects. The experimental results show that users can use only a common monocular camera to achieve gaze estimation and tracking and to achieve most functions of real-time precise human-computer interaction on the basis of auto eye control.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012080
Author(s):  
Xiuhao Xi ◽  
Jun Xiao ◽  
Qiang Zhang ◽  
Yanchao Wang

Abstract For the problem of road surface condition recognition, this paper proposes a real-time tracking method to estimate road surface slope and adhesion coefficient. Based on the fusion of dynamics and kinematics, the current road slope of the vehicle which correct vertical load is estimated. The effect of the noise from dynamic and kinematic methods on the estimation results is removed by designing a filter. The normalized longitudinal force and lateral force are calculated by Dugoff tire model, and the Jacobian matrix of the vector function of the process equation is obtained by combining the relevant theory of EKF algorithm. The road adhesion coefficient is estimated finally. The effectiveness of the algorithm is demonstrated by analyzing the results under different operating conditions, such as docking road and bisectional road, using a joint simulation of Matlab/Simulink and Carsim.


Sign in / Sign up

Export Citation Format

Share Document