vacancy ordering
Recently Published Documents


TOTAL DOCUMENTS

358
(FIVE YEARS 46)

H-INDEX

46
(FIVE YEARS 5)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yunbing Ran ◽  
Zheyi Zou ◽  
Bo Liu ◽  
Da Wang ◽  
Bowei Pu ◽  
...  

AbstractThe electrochemical thermodynamic and kinetic characteristics of rechargeable batteries are critically influenced by the ordering of mobile ions in electrodes or solid electrolytes. However, because of the experimental difficulty of capturing the lighter migration ion coupled with the theoretical limitation of searching for ordered phases in a constrained cell, predicting stable ordered phases involving cell transformations or at extremely dilute concentrations remains challenging. Here, a group-subgroup transformation method based on lattice transformation and Wyckoff-position splitting is employed to predict the ordered ground states. We reproduce the previously reported Li0.75CoO2, Li0.8333CoO2, and Li0.8571CoO2 phases and report a new Li0.875CoO2 ground state. Taking the advantage of Wyckoff-position splitting in reducing the number of configurations, we identify the stablest Li0.0625C6 dilute phase in Li-ion intercalated graphite. We also resolve the Li/La/vacancy ordering in Li3xLa2/3−xTiO3 (0 < x < 0.167), which explains the observed Li-ion diffusion anisotropy. These findings provide important insight towards understanding the rechargeable battery chemistry.


Author(s):  
M. Alam Khan

Herein, we report precise variation of Fe and Mn constituent in the sodium magnate layered cathodes with the compositions of Na0.8Fe0.4Mn0.5O2, Na0.8Fe0.5Mn0.4O2, Na0.8Fe0.6Mn0.3O2, Na0.8Fe0.6Mn0.4O2, Na0.8Fe0.7Mn0.4O2, Na0.9Fe0.6Mn0.3O2 in order to attain a high performing cathode. Based on this transition metal stoichiometry, an interesting sodium magnate combination of Na0.8Fe0.6Mn0.3O2, with O3-type crystal phase, possess R3m space group along with the superior electrochemical behavior is obtained. On charge-discharge capacities in the range of 2.0-3.8 V at 0.1 C, it shows the comparatively higher performance of the first and the second charge capacity of 115 and 180 mAhg-1 and discharge capacity of 184 and 181 mAhg-1, respectively. The best sample was then compared with the closely related Na0.8Fe0.6Mn0.4O2, Na0.9Fe0.6Mn0.3O2 combination in terms of valence ratio and influence of excess sodium for the structure robustness, stability along with purity. The best sample with the composition Na0.8Fe0.6Mn0.3O2 does not show detectable impure phase while Na0.8Fe0.6Mn0.4O2 and Na0.9Fe0.6Mn0.3O2 shows a tendency of P-type (Cmca space group) behavior with 30.8% and 32.8%, respectively. The enhancement of iron constituent increases not only the performances but also the stabilization of sodium vacancy ordering and substitution of Mn with a substantial reduction of Jahn-Teller distortion, mounting biphasic characteristics and high peak intensity of 41.5 °.


2021 ◽  
pp. 2101043
Author(s):  
Bangguo Zhou ◽  
Haohao Yin ◽  
Caihong Dong ◽  
Liping Sun ◽  
Wei Feng ◽  
...  

Inorganics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 62
Author(s):  
Hua Guo ◽  
Aleksander Jaworski ◽  
Zheng Chen ◽  
Can Lu ◽  
Adam Slabon ◽  
...  

We investigated the nitridation of reduced BaTiO3, BaTiO2.60H0.08, corresponding to an oxyhydride with a large concentration of O defects (>10%). The material is readily nitrided under flowing N2 gas at temperatures between 400 and 450 °C to yield oxynitrides BaTiO2.6Nx (x = 0.2−0.22) with a slightly tetragonally distorted perovskite structure, a ≈ 4.01 and c ≈ 4.02 Å, and Ti partially remaining in the oxidation state III. The tetragonal structure was confirmed from Raman spectroscopy. 14N MAS NMR spectroscopy shows a single resonance at 270 ppm, which is typical for perovskite transition metal oxynitrides. However, largely different signal intensity for materials with very similar N content suggests N/O/vacancy ordering when prolonging nitridation times to hours. Diffuse reflectance UV-VIS spectroscopy shows a reduction of the intrinsic band gap to 2.4–2.45 eV compared to BaTiO3 (~3.2 eV). Mott-Schottky measurements confirm n-type conductivity and reveal a slight negative shift of the conduction band edge from –0.59 V (BaTiO3) to ~–0.65 eV.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qinghua Zhang ◽  
Ang Gao ◽  
Fanqi Meng ◽  
Qiao Jin ◽  
Shan Lin ◽  
...  

AbstractDedicated control of oxygen vacancies is an important route to functionalizing complex oxide films. It is well-known that tensile strain significantly lowers the oxygen vacancy formation energy, whereas compressive strain plays a minor role. Thus, atomic reconstruction by extracting oxygen from a compressive-strained film is challenging. Here we report an unexpected LaCoO2.5 phase with a zigzag-like oxygen vacancy ordering through annealing a compressive-strained LaCoO3 in vacuum. The synergetic tilt and distortion of CoO5 square pyramids with large La and Co shifts are quantified using scanning transmission electron microscopy. The large in-plane expansion of CoO5 square pyramids weaken the crystal field splitting and facilitated the ordered high-spin state of Co2+, which produces an insulating ferromagnetic state with a Curie temperature of ~284 K and a saturation magnetization of ~0.25 μB/Co. These results demonstrate that extracting targeted oxygen from a compressive-strained oxide provides an opportunity for creating unexpected crystal structures and novel functionalities.


Sign in / Sign up

Export Citation Format

Share Document