planet gear
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 23)

H-INDEX

13
(FIVE YEARS 1)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 557
Author(s):  
Shuiguang Tong ◽  
Junjie Li ◽  
Feiyun Cong ◽  
Zilong Fu ◽  
Zheming Tong

Due to planetary movement of planet gears, the vibration signal perceived by a stationary sensor is modulated and difficult to diagnose. This paper proposed a vibration separation methodology compensated by a time-varying transfer function (TVTF-VS), which is a further development of the vibration separation (VS) method in the diagnosis of non-hunting tooth planetary gearboxes. On the basis of VS, multi-teeth VS is proposed to extract and synthesize the meshing signal of a planet gear using a single transducer. Considering the movement regularity of a planetary gearbox, the time-varying transfer function (TVTF) is represented by a generalized expression. The TVTF is constructed using a segment of healthy signal and an evaluation indicator is established to optimize the parameters of the TVTF. The constructed TVTF is applied to overcome the amplitude modulation effect and highlight fault characteristics. After that, experiments with baseline, pitting, and compound localized faults planet gears were conducted on a non-hunting tooth planetary gearbox test rig, respectively. The results demonstrate that incipient failure on a planet gear can be detected effectively, and relative location of the local faults can be determined accurately.


Lubricants ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 98
Author(s):  
Thomas Hagemann ◽  
Huanhuan Ding ◽  
Esther Radtke ◽  
Hubert Schwarze

The use of planetary gear stages intends to increase power density in drive trains of rotating machinery. Due to lightweight requirements on this type of machine elements, structures are comparably flexible while mechanical loads are high. This study investigates the impact of structure deformation on sliding planet gear bearings applied in the planetary stages of wind turbine gearboxes with helical gears. It focuses on three main objectives: (i) development of a procedure for the time-efficient thermo-elasto-hydrodynamic (TEHD) analysis of sliding planet gear bearing; (ii) understanding of the specific deformation characteristics of this application; (iii) investigation of the planet gear bearing’s modified operating behavior, caused by the deformation of the sliding surfaces. Generally, results indicate an improvement of predicted operating conditions by consideration of structure deformation in the bearing analysis for this application. Peak load in the bearing decreases because the loaded proportion of the sliding surface increases. Moreover, tendencies of single design measures, determined for rigid geometries, keep valid but exhibit significantly different magnitudes under consideration of structure deformation. Results show that consideration of structure flexibility is essential for sliding planet gear bearing analysis if quantitative assertions on load distributions, wear phenomena, and interaction of the bearing with other components are required.


Lubricants ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 97
Author(s):  
Thomas Hagemann ◽  
Huanhuan Ding ◽  
Esther Radtke ◽  
Hubert Schwarze

The application of sliding planet gear bearings in wind turbine gearboxes has become more common in recent years. Assuming practically applied helix angles, the gear mesh of the planet stage causes high force and moment loads for these bearings involving high local loads at the bearing edges. Specific operating behavior and suitable design measures to cope with these challenging conditions are studied in detail based on a thermo-hydrodynamic (THD) bearing model. Radial clearance and axial crowning are identified as important design parameters to reduce maximum pressures occurring at the bearing edges. Furthermore, results indicate that a distinct analysis of the gear mesh load distribution is required to characterize bearing operating behavior at part-load. Here, operating conditions as critical as the ones reached at nominal load might occur. Wear phenomena can improve the shape of the gap in the circumferential as well as in axial direction incorporating a significant reduction of local maximum pressures. The complexity of the combination of these aspects and the additionally expected impact of structure deformation gives an insight into the challenges in the design processes of sliding planet gear bearings for wind turbine gearbox applications.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2638
Author(s):  
Xianhua Chen ◽  
Xingkai Yang ◽  
Ming J. Zuo ◽  
Zhigang Tian

Planetary gearbox systems are critical mechanical components in heavy machinery such as wind turbines. They may suffer from various failure modes, due to the harsh working environment. Dynamic modeling is a useful method to support early fault detection for enhancing reliability and reducing maintenance costs. However, reported studies have not considered the sun gear tooth crack and bearing clearance simultaneously to analyze their combined effect on vibration characteristics of planetary gearboxes. In this paper, a dynamic model is developed for planetary gearboxes considering the clearance of planet gear, sun gear, and carrier bearings, as well as sun gear tooth crack levels. Bearing forces are calculated considering bearing clearance, and the dynamic model equations are updated accordingly. The results reveal that the combination of bearing clearances can affect the vibration response with sun gear tooth crack by increasing the kurtosis. It is found that the effect of planet gear bearing clearance is very small, while the sun gear and carrier bearing clearance has clear impact on the vibration responses. These findings suggest that the incorporation of bearing clearance is important for planetary gearbox dynamic modeling.


Author(s):  
Jingyue Wang ◽  
Ning Liu ◽  
Haotian Wang ◽  
Lixin Guo

Abstract In order to study the influence of friction on the nonlinear dynamic characteristics of a planetary gear system, the dynamic model of a planet gear transmission system considering mixed elastohydrodynamic lubrication (EHL) friction, time-varying meshing stiffness, backlash and comprehensive meshing error is established. The Runge–Kutta method is used to solve the dynamic differential equations, and the bifurcation and chaos characteristics of the system are analysed through the bifurcation diagram, largest lyapunov exponent (LLE), Poincaré map, phase diagram, time history curve diagram and fast fourier transform (FFT)spectrum. The results of numerical simulation show that the planetary gear system with mixed EHL friction exhibits rich bifurcation characteristics, and the system experiences short-periodic motion, long-periodic motion, quasi-periodic motion and chaotic motion. The effect of tooth surface friction on the bifurcation characteristics of the planetary gear system is more obvious at high frequency than that at low frequency. Tooth surface friction causes the system to enter chaotic motion in advance.


2021 ◽  
Vol 493 ◽  
pp. 115844
Author(s):  
He Dai ◽  
Xinhua Long ◽  
Feng Chen ◽  
Jie Bian

2020 ◽  
Vol 19 (4) ◽  
pp. 70-79
Author(s):  
A. E. Sundukov

The paper presents an analysis of the component of vibration of the NK-12MP turboprop engine differential gearbox that is generated by the wear of the flanks of the teeth of the sun gear planet gear assembly pair and at certain values of its intensity may cause fatigue breakdown of the engines structural elements. A complex of diagnostic indicators is determined on the basis of this component. Its intensity is shown to be maximal in steady-state operation of the engine with the greatest run time. The data obtained by the spectrum of maxima are shown to have higher information content as compared to the autospectrum data. The complex of diagnostic indicators proposed on the basis of the component under consideration makes it possible to successfully control the technical condition of the differential gearbox by the defects of gear tooth flank wear.


Sign in / Sign up

Export Citation Format

Share Document