neonatal pigs
Recently Published Documents


TOTAL DOCUMENTS

481
(FIVE YEARS 34)

H-INDEX

40
(FIVE YEARS 3)

Author(s):  
Dieniffer Peixoto-Neves ◽  
Praghalathan Kanthakumar ◽  
Jeremiah M Afolabi ◽  
Hitesh Soni ◽  
Randal K Buddington ◽  
...  

KV7, the voltage-gated potassium channels encoded by KCNQ genes, mediate heterogeneous vascular responses in adult rodents. Postnatal changes in the functional expression of KV7 channels have been reported in rodent saphenous arteries, but their physiological function in the neonatal renal vascular bed is unclear. Here, we report that, unlike adult pigs, only KCNQ1 (KV7.1) out of the five members of KCNQ genes was detected in neonatal pig renal microvessels. KCNQ1 is present in fetal pig kidneys as early as day 50 of gestation, and the level of expression remains the same up to postnatal day 21. Activation of the renal vascular smooth muscle cell (SMC) KV7.1 stimulated whole-cell currents, inhibited by HMR1556 (HMR), a selective KV7.1 blocker. HMR did not change the steady-state diameter of isolated renal microvessels. Similarly, intrarenal artery infusion of HMR did not alter the mean arterial pressure (MAP), renal blood flow (RBF), and renal vascular resistance (RVR) in the pigs. An approximately 20 mmHg reduction in the MAP evoked effective autoregulation of the RBF, which HMR inhibited. We conclude that 1) The expression of KCNQ isoforms in porcine renal microvessels is dependent on kidney maturation, 2) KV7.1 is functionally expressed in neonatal pig renal vascular SMCs, 3) a decrease in arterial pressure up to 20 mmHg induces renal autoregulation in neonatal pigs, and 4) SMC KV7.1 does not control basal renal vascular tone but contributes to neonatal renal autoregulation triggered by a step decrease in arterial pressure.


Author(s):  
Caitlin Vonderohe ◽  
Gregory Guthrie ◽  
Barbara Stoll ◽  
Shaji Chacko ◽  
Harry Dawson ◽  
...  

Background & Aims: The tissue specific molecular mechanisms involved in perinatal liver and intestinal FXR-FGF19 signaling are poorly defined. Our aim was to establish how gestational age and feeding status affect bile acid synthesis pathway, bile acid pool size, ileal response to bile acid stimulation, genes involved in bile acid-FXR-FGF19 signaling and plasma FGF19 in neonatal pigs. Methods Term (n=23) and preterm (n=33) pigs were born via cesarean section at 100% and 90% gestation, respectively. Plasma FGF19, hepatic bile acid and oxysterol profiles, and FXR target gene expression was assessed in pigs at birth and after a bolus feed on day 3 of life. Pig ileal tissue explants were used to measure signaling response to bile acids. Results Preterm pigs had smaller, more hydrophobic bile acid pools, lower plasma FGF19, and blunted FXR-mediated ileal response to bile acid stimulation than term pigs. GATA-4 expression was higher in jejunum than ileum, and was higher in preterm than term pig ileum. Hepatic oxysterol analysis suggested dominance of the alternative pathway of bile acid synthesis in neonates, regardless of gestational age and persists in preterm pigs after feeding on day 3. Conclusion These results highlight the tissue-specific molecular basis for the immature enterohepatic bile acid signaling via FXR-FGF19 in preterm pigs and may have implications for disturbances of bile acid homeostasis and metabolism in preterm infants.


Author(s):  
Alexandra Proctor ◽  
Nancy A. Cornick ◽  
Chong Wang ◽  
Shankumar Mooyottu ◽  
Paulo A. Arruda ◽  
...  

C. difficile is an important bacterial pathogen that is the most common cause of infections associated with health care in the United States. It also causes significant morbidity and mortality in neonatal pigs, and currently there are no preventative treatments available to livestock producers.


2021 ◽  
Author(s):  
Jidong Xu ◽  
Junyong Mao ◽  
Xiao Han ◽  
Fushan Shi ◽  
Qin Gao ◽  
...  

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing acute intestinal infection in pigs, with high mortality often seen in neonatal pigs. The newborns rely on innate immune responses against invading pathogens because of lacking adaptive immunity. However, how PEDV disables the innate immunity of newborns towards severe infection remains unknown. We found that PEDV infection led to reduced expression of histone deacetylases (HDACs), especially HDAC1 in porcine IPEC-J2 cells. HDACs are considered as important regulators of innate immunity. We hypothesized that PEDV might interact with certain host factors to regulate HDAC1 expression in favor of its replication. We show that HDAC1 acted as a negative regulator of PEDV replication in IPEC-J2 cells, as shown by chemical inhibition, gene knockout and overexpression. A GC-box ( GCCCCACCCCC ) within the HDAC1 promoter region was identified for Sp1 binding in IPEC-J2 cells. Treatment of the cells with Sp1 inhibitor, mithramycin A, inhibited HDAC1 expression, indicating direct regulation of HDAC1 expression by Sp1. Of the viral proteins that were overexpressed in IPEC-J2 cells, the N protein was found to be present in the nuclei and more inhibitory to HDAC1 transcription. The putative NLS 261 PKKNKSR 267 contributed to its nuclear localization. The N protein interacted with Sp1 and interfered with its binding to the promoter region, thereby inhibiting its transcriptional activity for HDAC1 expression. Our findings reveal a novel mechanism of PEDV evasion of the host responses, offering implications for studying the infection processes of other coronaviruses. Importance The enteric coronavirus porcine epidemic diarrhea virus (PEDV) causes fatal acute intestinal infection in neonatal pigs that rely on innate immune responses. Histone deacetylases (HDACs) play important roles in innate immune regulation. Our study found PEDV suppresses HDAC1 expression via the interaction of its N protein and porcine Sp1, which identified a novel mechanism of PEDV evasion of the host responses to benefit its replication. This study suggests that other coronaviruses, including SARS-CoV and SARS-CoV-2, may also make use of their N proteins to intercept the host immune responses in favor of their infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pawiya Pupa ◽  
Prasert Apiwatsiri ◽  
Wandee Sirichokchatchawan ◽  
Nopadon Pirarat ◽  
Tanawong Maison ◽  
...  

AbstractThe lactic acid bacteria (LAB) Lactobacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72N) have appeared promising as replacements for antibiotics in in vitro studies. Microencapsulation, especially by the spray-drying method, has been used to preserve their numbers and characteristics during storage and digestion. This study compared the efficacy of these strains and their microencapsulated form with antibiotic usage on growth performance, faecal microbial counts, and intestinal morphology in nursing-finishing pigs. A total of 240 healthy neonatal pigs were treated on days 0, 3, 6, 9, and 12 after cross-fostering. Sterile peptone water was delivered orally to the control and antibiotic groups. Spray-dried Lactobacillus plantarum strain 22F stored for 6-months was administered to piglets in the spraydry group. Three ml of each the three fresh strains (109 CFU/mL) were orally administered to piglets in each group. All pigs received the basal diets, but these were supplemented with routine antibiotic for the antibiotic group. Pigs in all the probiotic supplemented groups exhibited a better average daily gain and feed conversion ratio than those of the controls in the nursery and grower phases. Probiotic supplementation increased viable lactobacilli and decreased enterobacterial counts. Antibiotic additives reduced both enterobacterial and lactobacilli counts. Villous height and villous height:crypt depth ratio were greater in probiotic and antibiotic supplemented pigs comparing to the controls, especially in the jejunum. The results demonstrated the feasibility of using these strains as a substitute for antibiotics and the practicality of the microencapsulation protocol for use in swine farms.


2021 ◽  
Author(s):  
Juan Carlos Mora-Díaz ◽  
Pablo E Piñeyro ◽  
Rolf Rauh ◽  
William Nelson ◽  
Zianab Sankoh ◽  
...  

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a Betacoronavirus that causes vomiting and wasting disease and/or encephalomyelitis in suckling pigs. This study characterized PHEV infection, pathogenesis, and immune response in caesarean-derived, colostrum-deprived (CDCD) neonatal pigs. Infected animals developed mild respiratory, enteric, and neurological clinical signs between 2 to 13 days post oronasal inoculation (dpi). PHEV did not produce viremia, but virus shedding was detected in nasal secretions (1-10 dpi) and feces (2-7 dpi) by RT-qPCR. Viral RNA was detected in all tissues except liver, but the detection rate and RT-qPCR Ct values decreased over time. The highest concentration of virus was detected in inoculated piglets necropsied at 5 dpi in turbinate and trachea, followed by tonsils, lungs, tracheobronchial lymph nodes, and stomach. The most representative microscopic lesions were gastritis lymphoplasmacytic, moderate, multifocal, with perivasculitis, and neuritis with ganglia degeneration. A moderate inflammatory response, characterized by increased levels of IFN-α in plasma (5 dpi) and infiltration of T lymphocytes and macrophages was also observed. Increased plasma levels of IL-8 were detected at 10 and 15 dpi, coinciding with the progressive resolution of the infection. Moreover, a robust antibody response was detected by 10 dpi. An ex vivo air-liquid CDCD-derived porcine respiratory cells culture (ALI-PRECs) system showed virus replication in ALI-PRECs and cytopathic changes and disruption of ciliated columnar epithelia, thereby confirming the tracheal epithelia as a primary site of infection for PHEV. IMPORTANCE Among the ∼46 virus species in the Family Coronaviridae (2019), many of which are important pathogens of humans and 6 of which are commonly found in pigs, porcine hemagglutinating encephalomyelitis remains one of the least researched. The present study provided a comprehensive characterization of the PHEV infection process and immune responses using CDCD neonatal pigs. Moreover, we used an ex vivo porcine respiratory cells culture (ALI-PRECs) system resembling the epithelial lining of the tracheobronchial region of the porcine respiratory tract to demonstrate that the upper respiratory tract is a primary site of PHEV infection. This study provides a platform for further multidisciplinary studies of coronavirus infections.


2021 ◽  
Vol 226 ◽  
pp. 106700
Author(s):  
Alyce M. Swinbourne ◽  
Karen L. Kind ◽  
Tom Flinn ◽  
David O. Kleemann ◽  
William H.E.J. van Wettere

2021 ◽  
Vol 232 ◽  
pp. 110170
Author(s):  
Sandra Vreman ◽  
Norbert Stockhofe-Zurwieden ◽  
Ditta J. Popma-de Graaf ◽  
Huub F.J. Savelkoul ◽  
C. Barnier-Quer ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Mohamed El-Tholoth ◽  
Huiwen Bai ◽  
Michael G. Mauk ◽  
Linda Saif ◽  
Haim H. Bau

The porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV) are coronaviruses (CoVs) of neonatal pigs that cause great economic losses to pig farms and pork processors.


Sign in / Sign up

Export Citation Format

Share Document