radiant heat
Recently Published Documents


TOTAL DOCUMENTS

1321
(FIVE YEARS 185)

H-INDEX

51
(FIVE YEARS 5)

2022 ◽  
Vol 172 ◽  
pp. 107322
Author(s):  
Yueqiong Wu ◽  
Kuibin Zhou ◽  
Mengya Zhou ◽  
Mengyuan Huang ◽  
Chao Wang ◽  
...  
Keyword(s):  

2022 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Mamadou Ndiaye ◽  
Peter Myler ◽  
Baljinder K. Kandola

In thermoplastic composites, the polymeric matrix upon exposure to heat may melt, decompose and deform prior to burning, as opposed to the char-forming matrices of thermoset composites, which retain their shape until reaching a temperature at which decomposition and ignition occur. In this work, a theoretical and numerical heat transfer model to simulate temperature variations during the melting, decomposition and early stages of burning of commonly used thermoplastic matrices is proposed. The scenario includes exposing polymeric slabs to one-sided radiant heat in a cone calorimeter with heat fluxes ranging from 15 to 35 kW/m2. A one-dimensional finite difference method based on the Stefan approach involving phase-changing and moving boundary conditions was developed by considering convective and radiative heat transfer at the exposed side of the polymer samples. The polymers chosen to experimentally validate the simulated results included polypropylene (PP), polyester (PET), and polyamide 6 (PA6). The predicted results match well with the experimental results.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 296
Author(s):  
Nur-Us-Shafa Mazumder ◽  
Sumit Mandal ◽  
Robert J. Agnew ◽  
Adriana Petrova ◽  
Lynn M. Boorady ◽  
...  

More than 60,000 firefighters’ injuries were reported by the National Fire Protection Association in the U.S. in 2019. Inadequate protection by bunker gear could be a reason for most of the injuries. Firefighters repeatedly encounter thermal hazards due to their job responsibilities. Degradation could occur on bunker gear fabric during thermal exposure. It has been found that the presence of moisture affects performance as well, which may come from wearers’ sweat. Proper evaluation of the tensile strength of the fabrics used in bunker gear could provide information essential for maintenance the overall integrity of the gear. An evaluation of the tensile strength of fabrics when exposed to 10, 15, and 20 kW/m2 radiant heat flux in the presence of moisture is reported. In each fabric system, a total of sixty-four different samples were prepared for four different types of fabric and four levels of moisture which were exposed to three different radiant heat flux for five minutes. Heat flux and moisture levels have significant impact on tensile strength. The effect of moisture on tensile strength in a three-layered fabric system is higher than that for a single layer fabric. An understanding of the impact of heat and moisture on fabric strength has been achieved.


2021 ◽  
Vol 35 (6) ◽  
pp. 8-14
Author(s):  
Yi-Chul Shin ◽  
Soo-Young Park ◽  
Kye-Won Park ◽  
Dong-Ho Choi ◽  
Gil-Yong Lee ◽  
...  

When a flashover occurs from a fire in a building compartment, the fire intensifies explosively and changes from a fuel-controlled fire to a ventilation-controlled fire. As a result, flames and unburnt gas are ejected from openings. The ejected unburned gas reacts violently with external oxygen to form a large-scale ejected flame, which causes the fire to expand to the upper layer. Moreover, the radiation of extreme heat to neighboring buildings contributes to fire spreading between buildings. In this study, a quantitative evaluation process was established to evaluate the thermal effect of radiant heat generated from an open fire on the exterior materials of facilities, assuming a fully developed fire.


Foristek ◽  
2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Ardiansyah Ardiansyah ◽  
Mustofa Mustofa ◽  
Iskandar Iskandar ◽  
Andi Idhan ◽  
Yuli Asmi Rahman

Heat transfer is the transfer of energy from one area to another due to the temperature difference between these areas. Wasted heat energy can be converted into electricity using (TEG) between the hot and cold sides. If the temperature difference is more significant, the efficiency may increase along with the operating temperature of the TEG-type material. So in this study, the author will calculate the heat transfer that occurs in Photovoltaic (PV), Thermoelectric Generator (TEG), and Hot Mirrors by utilizing thermal energy light produced from Muxindo LED bulbs with 10 Watt, 15 Watt, and 20 Watt power. The results of this study indicate that by using 10, 15, and 20 Watt LED bulbs for free convection heat transfer, the power generated from each point increases because it passes through several obstacles from objects that experience a decrease in temperature to PV and TEG, with the characteristics of the displacement. The movement of molecules from the medium importance follows convection heat at every point of transfer in the intermediate substance. The most significant power generated from radiant heat transfer is about 0.1873 Watt. It occurs on the surface of the fresnel lens using a 20 Watt LED bulb with the characteristic that the radiation propagates in a straight line and does not require an intermediate medium to transfer heat from one substance to another. The most significant conduction heat transfer power, 0.2453 Watt, occurs in Fresnel Lens using a 20 Watt LED bulb with heat transfer characteristics in solid objects.


2021 ◽  
Author(s):  
Fan Zhang ◽  
Guoqiang Zhang

Abstract Radiant cooling technology is a sustainable technology for improving built environment. The past research only studied the performance (e.g., radiant heat flux) based on Kirchhoff’s law while the accuracy and its reasons were seldom analyzed. In order to study the mechanism deeply, a new model of radiant heat transfer is derived theoretically which considers emissivity and absorptivity independently. This model is validated by the experimental data then applied in a reference case for further analysis. The analyzing methods of sensitivity and relative deviation are performed to investigate the reasons for the errors. The results of sensitivity analysis show that it is about 20% − 40% more sensitive for the emissivity to the heat flux than the absorptivity. Furthermore, the deviation of the heat flux can reach up to 20% when the absorptivity is in the range from 0.4 to 0.9. This deviation is close to the estimated error range of 21.8% in the past studies. Therefore, the discussion based on the theoretical analysis, shows that the errors in past studies are highly due to the oversimplified preconditions for applying Kirchhoff’s law and they ignored the impact of surface absorption. Additionally, the validation in the previous experiments was highly coincidence, since they neglected the key independent tests of the absorptivity and radiant heat flux. Comprehensively, the new model is valuable to provide a more reliable solution for analyzing the radiant heat transfer and for the future design of an independent test of radiant heat flux.


Sign in / Sign up

Export Citation Format

Share Document