arid and semiarid areas
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 41)

H-INDEX

12
(FIVE YEARS 3)

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 133
Author(s):  
Ting Yang ◽  
Xuguang Xing ◽  
Yan Gao ◽  
Xiaoyi Ma

Applying soil amendments plays a critical role in relieving water stress in arid and semiarid areas. The natural clay mineral attapulgite (ATP) can be utilized to adjust the balance of water and soil environment. In this study, we investigated four different particle size distribution typical soils in the Loess Plateau: (1) lou soil (LS), (2) dark loessial soil (DS), (3) cultivated loess soil (CS), (4) sandy soil (SS). Five ATP application rates (0, 1%, 2%, 3%, and 4%) were selected to test the effect of ATP on the soil water retention curve, soil saturated hydraulic conductivity, and soil structure. The results showed that applied ATP significantly increased the soil clay content, and the relative change of SS with 3% ATP applied increased by 53.7%. The field water holding capacity of LS, DS, CS, and SS with 3% ATP applied increased by 8.9%, 9.6%, 18.2%, and 45.0%, respectively. Although applied ATP reduced the saturated hydraulic conductivity, the values of CS and SS were opposite when the amount of ATP applied was >3%. The relative change in the amount of 0.25–1 mm soil water-stable aggregates of SS was 155.9% when 3% ATP was applied. Applied ATP can enhance soil water retention and soil stability, which may improve limited water use efficiency and relieve soil desiccation in arid and semiarid areas or similar hydrogeological areas.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yang Hu ◽  
Xingyu Jiang ◽  
Keqiang Shao ◽  
Xiangming Tang ◽  
Boqiang Qin ◽  
...  

Climate change has given rise to salinization and nutrient enrichment in lake ecosystems of arid and semiarid areas, which have posed the bacterial communities not only into an ecotone in lake ecosystems but also into an assemblage of its own unique biomes. However, responses of bacterial communities to climate-related salinization and nutrient enrichment remain unclear. In September 2019, this study scrutinized the turnover of bacterial communities along gradients of increasing salinity and nutrient by a space-for-time substitution in Xinjiang Uyghur Autonomous Region, China. We find that salinization rather than nutrient enrichment primarily alters bacterial communities. The homogenous selection of salinization leads to convergent response of bacterial communities, which is revealed by the combination of a decreasing β-nearest taxon index (βNTI) and a pronounced negative correlation between niche breadth and salinity. Furthermore, interspecific interactions within bacterial communities significantly differed among distinct salinity levels. Specifically, mutualistic interactions showed an increase along the salinization. In contrast, topological parameters show hump-shaped curves (average degree and density) and sunken curves (modularity, density, and average path distance), the extremums of which all appear in the high-brackish environment, hinting that bacterial communities are comparatively stable at freshwater and brine environments but are unstable in moderately high-brackish lake.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2716
Author(s):  
Karima Bencherif ◽  
Frédéric Laruelle ◽  
Yolande Dalpé ◽  
Anissa Lounès-Hadj Sahraoui

(1) Background: Soil degradation is an increasingly important problem in many parts of the world, particularly in arid and semiarid areas. Arbuscular mycorrhizal fungi (AMF) isolated from arid soils are recognized to be better adapted to these edaphoclimatic conditions than exogenous ones. Nevertheless, little is known about the importance of AMF inoculum sources on Tamarix articulata development in natural saline soils. Therefore, the current study aims at investigating the efficiency of two AMF-mixed inoculums on T. articulata growth, with consideration of its rhizosphere microbiota. (2) Methods: indigenous inoculum made of strains originating from saline soils and a commercial one were used to inoculate T. articulata in four saline soils with different salinity levels under microcosm conditions with evaluation of rhizosphere microbial biomasses. (3) Results: Our findings showed that indigenous inoculum outperforms the commercial one by 80% for the mycorrhizal rate and 40% for plant biomasses, which are correlated with increasing shoot phosphorus content. Soil microbial biomasses increased significantly with indigenous mycorrhizal inoculum in the most saline soil with 46% for AMF, 25% for saprotrophic fungi and 15% for bacterial biomasses. (4) Conclusion: Present results open the way towards the preferential use of mycorrhizal inoculum, based on native AMF, to perform revegetation and to restore the saline soil microbiota.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ling Zhang ◽  
Shu Wang ◽  
Chun Su ◽  
AJ Harris ◽  
Liang Zhao ◽  
...  

The genus Zygophyllum comprises over 150 species within the plant family Zygophyllaceae. These species predominantly grow in arid and semiarid areas, and about 20 occur in northwestern China. In this study, we sampled 24 individuals of Zygophyllum representing 15 species and sequenced their complete chloroplast (cp) genomes. For comparison, we also sequenced cp genomes of two species of Peganum from China representing the closely allied family, Nitrariaceae. The 24 cp genomes of Zygophyllum were smaller and ranged in size from 104,221 to 106,286 bp, each containing a large single-copy (LSC) region (79,245–80,439 bp), a small single-copy (SSC) region (16,285–17,146 bp), and a pair of inverted repeat (IR) regions (3,792–4,466 bp). These cp genomes contained 111–112 genes each, including 74–75 protein-coding genes (PCGs), four ribosomal RNA genes, and 33 transfer RNA genes, and all cp genomes showed similar gene order, content, and structure. The cp genomes of Zygophyllum appeared to lose some genes such as ndh genes and rRNA genes, of which four rRNA genes were in the SSC region, not in the IR regions. However, the SC and IR regions had greater similarity within Zygophyllum than between the genus and Peganum. We detected nine highly variable intergenic spacers: matK-trnQ, psaC-rps15, psbZ-trnG, rps7-trnL, rps15-trnN, trnE-trnT, trnL-rpl32, trnQ-psbK, and trnS-trnG. Additionally, we identified 156 simple sequence repeat (cpSSR) markers shared among the genomes of the 24 Zygophyllum samples and seven cpSSRs that were unique to the species of Zygophyllum. These markers may be useful in future studies on genetic diversity and relationships of Zygophyllum and closely related taxa. Using the sequenced cp genomes, we reconstructed a phylogeny that strongly supported the division of Chinese Zygophyllum into herbaceous and shrubby clades. We utilized our phylogenetic results along with prior morphological studies to address several remaining taxonomic questions within Zygophyllum. Specifically, we found that Zygophyllum kaschgaricum is included within Zygophyllum xanthoxylon supporting the present treatment of the former genus Sarcozygium as a subgenus within Zygophyllum. Our results provide a foundation for future research on the genetic resources of Zygophyllum.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Fatima Ettalibi ◽  
Abderraouf El Antari ◽  
Allal Hamouda ◽  
Chemseddoha Gadhi ◽  
Hasnaâ Harrak

The prickly pear (Opuntia spp.) is an important plant in the economies of arid and semiarid areas, considering its low agronomic requirements and high water use efficiency. Characterizing the chemical composition of this plant will open new avenues for food, pharmaceutical, and cosmetic applications. In this context, this study examined the physical and chemical parameters of fruit seed oils of two prickly pear species from Rhamna area located in the center of Morocco: Opuntia ficus-indica (OFI), represented by the varieties “Safra” and “Aakria,” and Opuntia megacantha (OM), represented by the variety “Derbana.” The evaluated parameters included oil content, free acidity, specific extinction coefficients (K232 and K270), pigment content, fatty acid, and triglyceride composition. The seed oil contents of the three varieties “Safra,” “Aakria,” and “Derbana” were 8.09%, 8.74%, and 8.04%, respectively. OM (“Derbana”) seed oil was the most stable. The three studied varieties had higher contents of α-pheophytin and carotenoids than that of chlorophyll. Oil from the “Aakria” variety was distinguished by having the highest contents of α-pheophytin and chlorophyll. Significant differences in some fatty acid and triglyceride contents were noted. The major fatty acids of the three varieties were linoleic acid (60.55%–63.46%), followed by oleic acid (18.88%–21.81%) and palmitic acid (13.03%–13.75%). Furthermore, the chromatographic profiles of the triglycerides have shown the dominance of trilinolein (LLL, 24.33%–26.49%) and oleoyl-dilinoleoyl-glycerol (OLL, 20.92%–21.92%). Some triglycerides could be considered species markers, especially OLL, dipalmitoyl-linoleoyl-glycerol (PPL), oleoyl-linoleoyl-linolenoyl-glycerol and palmitoyl-oleoyl-dilinoleoyl-glycerol fraction (OLLn + PoLL), and stearoyl-dioleoyl-glycerol (SOO). This study provides a basis for qualitatively evaluating the therapeutic and cosmetic potential of prickly pear derivatives and for establishing quality standards of seed oil derived from the two species studied.


Author(s):  
Aiai Xu ◽  
Jie Liu ◽  
Zhiying Guo ◽  
Changkun Wang ◽  
Kai Pan ◽  
...  

It is critical to identify the assembly processes and determinants of soil microbial communities to better predict soil microbial responses to environmental change in arid and semiarid areas. Here, soils from 16 grassland-only, 9 paired grassland and farmland, and 16 farmland-only sites were collected across the central Inner Mongolia Plateau covering a steep environmental gradient. Through analyzing the paired samples, we discovered that land uses had strong effects on soil microbial communities, but weak effects on their assembly processes. For all samples, although no environmental variables were significantly correlated with the net relatedness index (NRI), both the nearest taxon index (NTI) and the β-nearest taxon index (βNTI) were most related to mean annual precipitation (MAP). With the increase of MAP, soil microbial taxa at the tips of the phylogenetic tree were more clustered, and the contribution of determinism increased. Determinism (48.6%), especially variable selection (46.3%), and stochasticity (51.4%) were almost equal in farmland, while stochasticity (75.0%) was dominant in grassland. Additionally, Mantel tests and redundancy analyses (RDA) revealed that the main determinants of soil microbial community structure were MAP in grassland, but mean annual temperature (MAT) in farmland. MAP and MAT were also good predictors of the community composition (the top 200 dominant OTUs) in grassland and farmland, respectively. Collectively, in arid and semiarid areas, soil microbial communities were more sensitive to environmental change in farmland than in grassland, and unlike the major impact of MAP on grassland microbial communities, MAT was the primary driver of farmland microbial communities. Importance As one of the most diverse organisms, soil microbes play indispensable roles in many ecological processes in arid and semiarid areas with limited macrofaunal and plant diversity, yet the mechanisms underpinning soil microbial community are not fully understood. In this study, soil microbial communities were investigated along a 500 km transect covering a steep environmental gradient across farmland and grassland in the areas. The results showed that precipitation was the main factor mediating the assembly processes. Determinism was more influential in farmland, and variable selection of farmland was twice that of grassland. Temperature mainly drove farmland microbial communities, while precipitation mainly affected grassland microbial communities. These findings provide new information about the assembly processes and determinants of soil microbial communities in arid and semiarid areas, consequently improving the predictability of the community dynamics, which have implications for sustaining soil microbial diversity and ecosystem functioning, particularly under global climate change conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ziqi Yin ◽  
Kai Zhang

Forecasting the depth of groundwater in arid and semiarid areas is a great challenge because these areas are complex hydrogeological environments and the observational data are limited. To deal with this problem, the grey seasonal index model is proposed. The seasonal characteristics of time series were represented by indicators, and the grey model with fractional-order accumulation was employed to fit and forecast different periodic indicators and long-term trends, respectively. Then, the prediction results of the two were combined together to obtain the prediction results. To verify the model performance, the proposed model is applied to groundwater prediction in Yinchuan Plain. The results show that the fitting error of the proposed model is 2.08%, while for comparison, the fitting error of the grey model of data grouping and Holt–Winters model is 3.94% and 5%, respectively. In the same way, it is concluded that the fitting error of groundwater in Weining Plain by the proposed model is 2.26%. On the whole, the groundwater depth in Ningxia Plain including Yinchuan Plain and Weining Plain will increase further.


Author(s):  
Yuanyuan Wang ◽  
Fanhao Meng ◽  
Min Luo

Abstract Growing water shortages have been a systemic risk around the world, especially in arid and semi-arid areas, with seriously threatening global food security and human well-being. Reasonable and accurate evaluations of the water shortages of cultivated lands provide scientific reference for irrigation strategies. In this study, to better understand the distribution and cause of water scarcity for the arid and semiarid areas, we used the arable land water scarcity index (AWSI), based on water footprint theory to accurately estimate the temporal and spatial patterns of the AWSI of Inner Mongolia in China over 1999–2018, and further reveal the key factors influencing the AWSI distribution. The AWSI distribution pattern of Inner Mongolia was high in southwest and low in northeast, with an average value of 0.63 and suffering from high water stress for a long time. The AWSI presented an increasing trend in 1999–2018, with slow in west (change rate2%) and fast in east (2%). The main factors that significantly affected the AWSI were precipitation, relative humidity, and agricultural planting area. This study can provide scientific reference for the formulation of agricultural water management and sustainable use strategies in arid and semiarid areas.


2021 ◽  
Author(s):  
Mehdi Yazdizadeh ◽  
Ghasem Mohammadi-Nejad ◽  
Leila Fahmideh ◽  
Fatemeh Ebrahimi ◽  
Mahmood Solouki ◽  
...  

Abstract Food security and nutrition concerns are putting an ancient, climate-smart grain back on our plates; Farm to fork, there has been a revival of interest in millet. Foxtail millet, as a multi-purpose product, has nutritious and medicinal potentials. This research is aimed at identifying combined markers as well as stable associations between such markers and the investigated agronomic traits in a wide range of foxtail millet germplasms under normal and salinity-stress conditions. In this context, association analysis has been conducted among 14 agronomic traits and 331 polymorphic AFLP markers generated by 12 primer combinations in 134 foxtail millet genotypes. Based on the analysis of population structure, the foxtail millet genotypes were divided into six subpopulations. The results showed that a number of markers had stable and significant associations under both normal and salinity-stress conditions with agronomic traits. The primer combinations had high polymorphic percentage, diversity indices were highly reliable and revealed significant genetic variability among the genotypes. Their PIC, MI and Shannon’s indices were also highly reliable and revealed significant genetic variability among the genotypes. Since the markers introduced in this research have stable and strong associations with the investigated traits under normal and salinity stress conditions, they can be suitable candidates’ in future marker-assisted breeding to improve salinity- resistance genotypes of foxtail millet in arid and semiarid areas.


Sign in / Sign up

Export Citation Format

Share Document