tree transpiration
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 25)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 13 (24) ◽  
pp. 13656
Author(s):  
Jérôme Ngao ◽  
Macarena L. Cárdenas ◽  
Thierry Améglio ◽  
Jérôme Colin ◽  
Marc Saudreau

Trees participate in mitigating the urban heat island phenomenon thanks to their transpiration and shading. This cooling potential is highly dependent on leaf area. Nevertheless, leaf traits potentially vary across different land management practices in urban settings, thereby challenging the models used to estimate thermal budgets. The present study aims to investigate the variability of leaf area traits of linden (Tilia spp.) urban trees, and their effect on simulated tree transpiration. Reconstruction of the leaf area was undertaken at the tree scale at three different urban land management sites from three cities: London and Birmingham (UK) and Chantilly (France). The reconstruction combined allometric measurements at shoot and leaf scales, and a tree-scale 3D digitization with laboratory analysis using field data collected by citizen scientists. The management practices had a significant impact on leaf area, and on tree allometric relationships, which were propagated through the reconstruction process. Relative differences between the management practices ranged between 12% and 48% according to the city where the variable was considered (e.g., leaf area index, total leaf area, or tree transpiration). Trees in managed sites (i.e., individualized leaf crowns, frequent leaf litter removal, and standard thinning/pruning operations) develop a higher leaf area, thus promoting cooling potential. This study shows that the variability of leaf traits, and their responses to different land management, can be studied by comprehensive data collection through citizen science and lab-based modelling. It also highlights the importance of appropriate, well-designed urban planning, where landscaping using urban trees can play an even better role in climate proofing cities.


2021 ◽  
Vol 35 (10) ◽  
Author(s):  
Johnny L. Boggs ◽  
Ge Sun ◽  
Jean‐Christophe Domec ◽  
Steven G. McNulty
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2466
Author(s):  
Àngela Puig-Sirera ◽  
Giovanni Rallo ◽  
Paula Paredes ◽  
Teresa A. Paço ◽  
Mario Minacapilli ◽  
...  

The SIMDualKc model was applied to evaluate the crop water use and the crop coefficient (Kc) of an irrigated olive grove (Olea europaea L.) located in Sicily, Italy, using experimental data collected from two crop seasons. The model applies the FAO56 dual Kc approach to compute the actual crop evapotranspiration (ETc act) and its components, i.e., the actual tree transpiration (Tc act), obtained through the basal crop coefficient (Kcb), and soil evaporation according to an evaporation coefficient (Ke). Model calibration was performed by minimizing the difference between the predicted Tc act and the observed daily tree transpiration measured with sap flow instrumentation (TSF field) acquired in 2009. The validation was performed using the independent data set of sap flow measurements from 2011. The calibrated Kcb was equal to 0.30 for the initial and non-growing season stages, 0.42 for the mid-season, and 0.37 for the end season. For both seasons, the goodness-of-fit indicators relative to comparing TSF field with the simulated Tc act resulted in root mean square errors (RMSE) lower than 0.27 mm d−1 and a slope of the linear regression close to 1.0 (0.94 ≤ b0 ≤ 1.00). The olive grove water balance simulated with SIMDualKc produced a ratio between soil evaporation (Es) and ETc act that averaged 39%. The ratio between actual (ETc act) and potential crop evapotranspiration (ETc) varied from 84% to about 99% in the mid-season, indicating that the values of ETc act are close to ETc, i.e., the adopted deficit irrigation led to limited water stress. The results confirm the suitability of the SIMDualKc model to apply the FAO56 dual Kc approach to tree crops, thus assessing the water use of olives and supporting the development of appropriate irrigation management tools that are usable by farmers. A different way to estimate Kcb is based on the approach suggested in 2009 by Allen and Pereira (A&P), which involves the measured fraction of ground covered (shaded) by the crop and the height of the trees. Its application to the studied grove produced the mid-season Kcb values ranging from 0.40–0.45 and end-season Kcb values ranging from 0.35–0.40. The comparison between the A&P-computed Tc act A&P and TSF field shows RMSE values ranging from 0.27 to 0.43 mm d−1, which demonstrates the adequacy of the latter approach for parameterizing water balance models and for irrigation scheduling decision making.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1159
Author(s):  
Jun-Fu Zhao ◽  
Zhi-Yong Liao ◽  
Lian-Yan Yang ◽  
Jian-Kang Shi ◽  
Zheng-Hong Tan

Background: Although numerous studies have been carried out in recent decades, soil respiration remains one of the less understood elements in global carbon budget research. Tropical forests store a considerable amount of carbon, and a well-established knowledge of the patterns, components, and controls of soil respiration in these forests will be crucial in global change research. Methods: Soil respiration was separated into two components using the trenching method. Each component was measured at multiple temporal scales and in different microhabitats. A commercial soil efflux system (Li8100/8150) was used to accomplish soil respiration monitoring. Four commonly used models were compared that described the temperature dependence of soil heterotrophic respiration using nonlinear statistics. Results and Conclusions: Trenching has a limited effect on soil temperature but considerably affects soil water content due to the exclusion of water loss via tree transpiration. Soil respiration decreased gradually from 8 to 4 μmol·m−2·s−1 6 days after trenching. Soil autotrophic (Ra) and heterotrophic respiration (Rh) have contrasting diel patterns and different responses to temperature. Rh was negatively correlated with temperature but positively correlated with relative humidity. Both Ra and Rh varied dramatically among microhabitats. The Q10 value of Rh derived using the Q10 model was 2.54. The Kirschbaum–O’Connell model, which implied a strong decrease of Q10 with temperature, worked best in describing temperature dependence of Rh. Heterotrophic respiration accounted for nearly half of the total soil efflux. We found an unexpected diurnal pattern in soil heterotrophic respiration which might be related to diurnal moisture dynamics. Temperature, but not soil moisture, was the major controller of seasonal variation of soil respiration in both autotrophic and heterotrophic components. From a statistical perspective, the best model to describe the temperature sensitivity of soil respiration was the Kirschbaum–O’Connell model. Soil respiration varied strongly among the microhabitats and played a crucial role in stand-level ecosystem carbon balance assessment.


Author(s):  
Johnny Boggs ◽  
Ge Sun ◽  
Jean-Christophe Domec ◽  
Steven McNulty

Quantifying species-specific tree transpiration across watershed zones is important for estimating watershed evapotranspiration (ET) and predicting drought effects on vegetation. The objectives of this study are to 1) assess sap flux density (Js) and tree-level transpiration (Ts) across three contrasting zones (riparian buffer, mid-hillslope, and upland-hillslope), 2) determine how species-specific Js responds to vapor pressure deficit (VPD), and 3) compare watershed-level transpiration (Tw) derived from each zone. We measured Js and Ts in eight tree species in the three zones in a 12-ha forested watershed. In the dry year of 2015, loblolly pine (Pinus taeda), Virginia pine (Pinus virginiana), and sweetgum (Liquidambar styraciflua) Js rates were significantly higher in the buffer when compared to the other two zones. In contrast, Js in tulip poplar (Liriodendron tulipifera) and red maple (Acer rubrum) were significantly lower in the buffer than in the mid-hillslope. Daily Ts varied by zone and ranged from 10 to 93 liters in the dry year and 9 to 122 liters in the wet year. Js responded nonlinearly to VPD in all trees and zones. Annual Tw based on scaled-Js data was 447 mm, 377 mm, and 340 mm for the buffer, mid-hillslope, and upland-hillslope, respectively. We conclude that large spatial variability in Js and scaled Tw were driven by differences in soil moisture at each zone and forest composition. Consequently, spatial heterogeneity of vegetation and soil moisture must be considered when accurately quantifying watershed level ET.


2021 ◽  
Author(s):  
Sofia Sushko ◽  
Alexey Yaroslavtsev ◽  
Nina Tsuvareva ◽  
Riccardo Valentini

<p>Trees play an important role in urban ecosystem functioning and providing many ecosystem services, in particular, water and energy balance regulation. Consequently, trees can be a tool to mitigate to run-off and heat island effect in urban areas. We quantified the possibility of urban trees to provide these ecosystem services in the northernmost city with a million population – St. Petersburg (59°57′ N / 30°19′ E; Russia). Two diffuse-porous tree species – Quercus robur L. (n=2) and Tilia cordata Mill. (n=4) – were chosen for the research. These tree species are the most common in the green infrastructure of the city despite they are not typical for this biome, i.e. south taiga. During two growing season (July-Oct. 2019, April-Oct. 2020), tree sap flux was measured by thermal dissipation method using TreeTalker device (Nature 4.0 Corp., Italy). Sap flux density (Js) was calculated with modified Granier’s empirical calibration equation. Energy loss through tree transpiration was estimated from sap flux per tree (Js × sap wood area) and latent heat of vaporization. For the entire observed period, average daily<strong> </strong>Js (24 h) of Q. robur trees were almost two times higher than T. cordata trees (3.46 vs. 1.91 g cm<sup>-2</sup> h<sup>-1</sup>). Importantly, for Q. robur Js significantly decreased with increasing tree age (from 3.75 to 1.99 g cm<sup>-2</sup> h<sup>-1</sup> with age alteration from 145 to 350 yrs.), while for T. cordata it did not change (1.74 and 1.69 g cm<sup>-2</sup> h<sup>-1</sup> for 60-80 and 100-115 yrs.). Q. robur showed a significant higher daily energy loss through tree transpiration compared to T. cordata (618 and 396 W tree<sup>-1</sup> with 100-108 diameter at breast high) for the studying period. Thus, Q. robur compared to T. cordata was more effective in providing water regulation services, especially in shallow groundwater table typical for St. Petersburg. Moreover, this tree species also has a higher capacity in mitigate to urban heat island effect.</p><p>Current research was financially supported by Russian Science Foundation, No 19-77-30012.</p>


2021 ◽  
Author(s):  
Simon Haberstroh ◽  
Maria C. Caldeira ◽  
Raquel Lobo-do-Vale ◽  
Joana I. Martins ◽  
Julia Moemken ◽  
...  

<p>The impact of interacting global change stressors on terrestrial ecosystems is hard to predict due to non-linear, amplifying, neutral or even buffering interaction effects. We investigated the effects of drought and plant invasion on Mediterranean cork oak (<em>Quercus suber</em> L.) ecosystem functioning and recovery with a combined rain exclusion (30-45 % reduction) and shrub (<em>Cistus ladanifer</em> L.) invasion experiment. As key parameter, we determined tree, shrub and ecosystem transpiration in four treatments: 1) cork oak control stands, 2) cork oaks with rain exclusion, 3) cork oaks invaded by shrubs and 4) cork oaks with rain exclusion and shrub invasion. Rain exclusion and plant invasion led to moderate, but neutral reductions of tree transpiration of 18 % (compared to control) during the mild summer drought in 2018. In 2019, the rain exclusion simulated the second driest year since 1950 for Southwestern (SW) Iberia. The interaction effect of drought and plant invasion was strongly amplifying, reducing tree transpiration by 47 %. Legacy effects on shrubs under the rain exclusion treatment led to a non-linear response during recovery from the severe drought in 2019. Invaded trees showed a delayed transpiration recovery (-51 % vs. control) due to strong competition with shrubs, while invaded trees with rain exclusion recovered to 75 % of the control. This buffering interaction response was caused by a weaker competition from drought-stressed shrubs. Given the projected increase in the frequency, intensity and duration of drought, an increasing non-linear impact on Mediterranean cork oak ecosystems is expected. Our results demonstrate that abiotic stressors modulate biotic interactions thereby impacting ecosystem functioning in a highly dynamic manner. Further efforts are thus needed to model and manage the impact of interacting global change stressors on terrestrial ecosystems.</p>


2020 ◽  
Vol 68 (4) ◽  
pp. 338-350
Author(s):  
Roberto Corona ◽  
Nicola Montaldo

AbstractMediterranean ecosystems are typically heterogeneous and savanna-like, with trees and grass competing for water use. By measuring sap flow, we estimated high transpiration of wild olive, a common Mediterranean tree, in Sardinia despite dry conditions. This estimate agrees with independent estimates of tree transpiration based on energy balance, highlighting the wild olive’s strong tolerance of dry conditions. The wild olive can develop an adaptation strategy to tolerate dry conditions. In this Sardinian case study, the wild olive grew in shallow soil, and the tree roots expanded into the underlying fractured basalt. The trees survived in dry periods using water infiltrated during wet seasons into fractured rocks and held in soil pockets. We estimated a high upward vertical flux through the bottom soil layer from the underlying substrate, which reached 97% evapotranspiration in August 2011. The water taken up by tree roots from bedrock hollows is usually neglected in ecohydrological modeling.


Sign in / Sign up

Export Citation Format

Share Document