rna labeling
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Christopher Sebastian Jürges ◽  
Manivel Lodha ◽  
Vu Thuy Khanh Le-Trilling ◽  
Pranjali Bhandare ◽  
Elmar Wolf ◽  
...  

For decades, human cytomegalovirus (HCMV) was thought to express ≈200 viral proteins during lytic infection. In recent years, systems biology approaches uncovered hundreds of additional viral gene products and suggested thousands of viral sites of transcription initiation. Despite all available data, the molecular mechanisms of HCMV gene regulation remain poorly understood. Here, we provide a unifying model of productive HCMV gene expression employing transcription start site profiling combined with metabolic RNA labeling as well as integrative computational analysis of previously published big data. This approach defined the expression of >2,600 high confidence viral transcripts and explained the complex kinetics of viral protein expression by cumulative effects of translation of incoming virion-associated RNA, multiple transcription start sites with distinct kinetics per viral open reading frame, and differences in viral protein stability. Most importantly, we identify pervasive transcription of transient RNAs as a common feature of this large DNA virus with its human host.


2021 ◽  
Author(s):  
Meng Xu ◽  
Tafadzwa Chigumira ◽  
Ziheng Chen ◽  
Jason Tones ◽  
Rongwei Zhao ◽  
...  

AbstractTERRA, TElomeric Repeat-containing RNA, is a long non-coding RNA transcribed from telomeres. Emerging evidence indicates that TERRA regulates telomere maintenance and chromosome end protection in normal and cancerous cells. However, the mechanism of how TERRA contributes to telomere functions is still unclear, partially owing to the shortage of approaches to track and manipulate endogenous TERRA molecules in live cells. Here, we developed a method to visualize TERRA in live cells via a combination of CRISPR Cas13 RNA labeling and Suntag technology. Single-particle tracking reveals that TERRA foci undergo anomalous diffusion in a manner that depends on the timescale and telomeric localization. Furthermore, we used a chemically-induced protein dimerization system to manipulate TERRA subcellular localization in live cells. Overall, our approaches to monitor and control TERRA locations in live cells provide powerful tools to better understand its roles in telomere maintenance and genomic integrity.


2021 ◽  
Vol 17 ◽  
pp. 2295-2301
Author(s):  
Laurin Flemmich ◽  
Sarah Moreno ◽  
Ronald Micura

A naturally occurring riboswitch can utilize 7-aminomethyl-O6-methyl-7-deazaguanine (m6preQ1) as cofactor for methyl group transfer resulting in cytosine methylation. This recently discovered riboswitch-ribozyme activity opens new avenues for the development of RNA labeling tools based on tailored O6-alkylated preQ1 derivatives. Here, we report a robust synthesis for this class of pyrrolo[2,3-d]pyrimidines starting from readily accessible N2-pivaloyl-protected 6-chloro-7-cyano-7-deazaguanine. Substitution of the 6-chloro atom with the alcoholate of interest proceeds straightforward. The transformation of the 7-cyano substituent into the required aminomethyl group turned out to be challenging and was solved by a hydration reaction sequence on a well-soluble dimethoxytritylated precursor via in situ oxime formation. The synthetic path now provides a solid foundation to access O6-alkylated 7-aminomethyl-7-deazaguanines for the development of RNA labeling tools based on the preQ1 class-I riboswitch scaffold.


2021 ◽  
Author(s):  
Krysta L Engel ◽  
Hei-Yong G Lo ◽  
Raeann Goering ◽  
Ying Li ◽  
Robert Spitale ◽  
...  

Thousands of RNA species display nonuniform distribution within cells. However, quantification of the spatial patterns adopted by individual RNAs remains difficult, in part by a lack of quantitative tools for subcellular transcriptome analysis. In this study, we describe an RNA proximity labeling method that facilitates the quantification of subcellular RNA populations with high spatial specificity. This method, termed Halo-seq, pairs a light-activatable, radical generating small molecule with highly efficient Click chemistry to efficiently label and purify spatially defined RNA samples. We compared Halo-seq with previously reported similar methods and found that Halo-seq displayed a higher efficiency of RNA labeling, indicating that it is well suited to the investigation of small, precisely localized RNA populations. We then used Halo-seq to quantify nuclear, nucleolar, and cytoplasmic transcriptomes, characterize their dynamic nature following perturbation, and identify RNA sequence features associated with their composition. Specifically, we found that RNAs containing AU-rich elements are relatively enriched in the nucleus. This enrichment becomes stronger upon treatment with the nuclear export inhibitor leptomycin B, both expanding the role of HuR in RNA export and generating a comprehensive set of transcripts whose export from the nucleus depends on HuR.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Myron Barber Child ◽  
Jack R Bateman ◽  
Amir Jahangiri ◽  
Armando Reimer ◽  
Nicholas C Lammers ◽  
...  

3D eukaryotic genome organization provides the structural basis for gene regulation. In Drosophila melanogaster, genome folding is characterized by somatic homolog pairing, where homologous chromosomes are intimately paired from end to end; however, how homologs identify one another and pair has remained mysterious. Recently, this process has been proposed to be driven by specifically interacting 'buttons' encoded along chromosomes. Here, we turned this hypothesis into a quantitative biophysical model to demonstrate that a button-based mechanism can lead to chromosome-wide pairing. We tested our model using live-imaging measurements of chromosomal loci tagged with the MS2 and PP7 nascent RNA labeling systems. We show solid agreement between model predictions and experiments in the pairing dynamics of individual homologous loci. Our results strongly support a button-based mechanism of somatic homolog pairing in Drosophila and provide a theoretical framework for revealing the molecular identity and regulation of buttons.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karoline Holler ◽  
Anika Neuschulz ◽  
Philipp Drewe-Boß ◽  
Janita Mintcheva ◽  
Bastiaan Spanjaard ◽  
...  

AbstractEarly stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.


ChemBioChem ◽  
2021 ◽  
Vol 22 (9) ◽  
pp. 1495-1495
Author(s):  
Jinguo Huang ◽  
Ruiqi Zhao ◽  
Jing Mo ◽  
Fang Wang ◽  
Xiaocheng Weng ◽  
...  
Keyword(s):  

ChemBioChem ◽  
2021 ◽  
Author(s):  
Jinguo Huang ◽  
Ruiqi Zhao ◽  
Jing Mo ◽  
Fang Wang ◽  
xiaocheng weng ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Anna Ovcharenko ◽  
Florian P. Weissenboeck ◽  
Andrea Rentmeister
Keyword(s):  

Author(s):  
Anna Ovcharenko ◽  
Florian P. Weissenboeck ◽  
Andrea Rentmeister
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document