optical fiber probe
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 54)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Tong Wang ◽  
Junfeng Jiang ◽  
Kun Liu ◽  
Shuang Wang ◽  
Panpan Niu ◽  
...  

Abstract We proposed and demonstrated a flexible, endoscopic, and minimally invasive coherent anti-Raman Stokes scattering (CARS) measurement method for single-cell application, employing a tapered optical fiber probe. A few-mode fiber (FMF), whose generated four-wave mixing band is out of CARS signals, was selected to fabricate tapered optical fiber probes, deliver CARS excitation pulses, and collect CARS signals. The adiabatic tapered fiber probe with a diameter of 11.61 µm can focus CARS excitation lights without mismatch at the focal point. The measurements for proof-of-concept were made with methanol, ethanol, cyclohexane, and acetone injected into simulated cells. The experimental results show that the tapered optical fiber probe can detect carbon-hydrogen (C–H) bond-rich substances and their concentration. To our best knowledge, this optical fiber probe provides the minimum size among probes for detecting CARS signals. These results pave the way for minimally invasive live-cell detection in the future.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1420
Author(s):  
Shuaifei Cui ◽  
Junfeng Liu ◽  
Kui Li ◽  
Qinze Li

To solve the problem that traditional single-probe instruments cannot accurately measure the gas and water holdup, the domestic design of the array holdup measuring instrument Array of Optical and Resistance Tool (AORT), composed of five sets of optical fiber probes and five sets of resistance probes, is carried out in both gas–water and oil–water. Simulated measurement experiments were conducted under different water cut in phase flow. Through the analysis of the experimental data, the response relationship between the optical fiber probe and the resistance probe of the AORT instrument in different fluids was obtained. Then, the data under different conditions of fluid, flowrate and water cut in the experiment were compared by drawing. Interpolation algorithm was used to perform two-maintenance holdup imaging, and finally the holdup image was compared with the pictures of the flow in the pipe recorded during the experiment. The results show that the resistance probe has a better response under low water cut conditions, and the optical fiber probe has a better response under high gas cut conditions, which is consistent with the theoretical analysis. The imaging diagram and the flow pattern in the pipe during the experiment are in good agreement. It can be seen that the accuracy of the holdup measured by the AORT instrument under the test conditions is verified, and can provide technical support for further carrying out the measurement and interpretation of the holdup in future, as well as the improvement of the instrument and on-site testing.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 444
Author(s):  
Victor Colas ◽  
Walter Blondel ◽  
Grégoire Khairallah ◽  
Christian Daul ◽  
Marine Amouroux

In the context of cutaneous carcinoma diagnosis based on in vivo optical biopsy, Diffuse Reflectance (DR) spectra, acquired using a Spatially Resolved (SR) sensor configuration, can be analyzed to distinguish healthy from pathological tissues. The present contribution aims at studying the depth distribution of SR-DR-detected photons in skin from the perspective of analyzing how these photons contribute to acquired spectra carrying local physiological and morphological information. Simulations based on modified Cuda Monte Carlo Modeling of Light transport were performed on a five-layer human skin optical model with epidermal thickness, phototype and dermal blood content as variable parameters using (i) wavelength-resolved scattering and absorption properties and (ii) the geometrical configuration of a multi-optical fiber probe implemented on an SR-DR spectroscopic device currently used in clinics. Through histograms of the maximum probed depth and their exploitation, we provide numerical evidence linking the characteristic penetration depth of the detected photons to their wavelengths and four source–sensor distances, which made it possible to propose a decomposition of the DR signals related to skin layer contributions.


2021 ◽  
Author(s):  
Tong Wang ◽  
Junfeng Jiang ◽  
Kun Liu ◽  
Shuang Wang ◽  
Panpan Niu ◽  
...  

2021 ◽  
Vol 345 ◽  
pp. 130149
Author(s):  
Lucia Sansone ◽  
Stefania Campopiano ◽  
Marianna Pannico ◽  
Michele Giordano ◽  
Pellegrino Musto ◽  
...  

2021 ◽  
Author(s):  
Antonio Iele ◽  
Armando Ricciardi ◽  
Claudia Pecorella ◽  
Andrea Cirillo ◽  
Fanny Ficuciello ◽  
...  

Author(s):  
Yushen Liu ◽  
Shotaro Kadoya ◽  
Masaki Michihata ◽  
Satoru Takahashi

Abstract For the measurement of micron-sized components, there are many methods widely used, such as by using CMM, and the size of the probe sphere of CMM is essential for measuring. In order to accurately measure the size of the probe sphere, a method by using Whispering Gallery Mode (WGM) resonance has been proposed. To measure the diameter of the microsphere with this method, the resonance wavelength and the angular mode number of WGM need to be known. The resonance wavelength can be measured by a wavelength meter and the angular mode number can be obtained by using the near-field optical fiber probe to measure the electric field intensity distribution on the surface of the microsphere. The detecting sensitivity of probe on electric field intensity is quite important for angular mode number measuring, which is deeply related to the accuracy of microsphere diameter measurement. In the process of electric field intensity detecting, the sensitivity of the probe can be affected by its shape. Therefore, the effect of probe tip shape on measurement was studied to optimize it. In this study, the effect of probe tip diameter, angle and shape on the measuring of electric field intensity on microsphere surface was investigated.


Sign in / Sign up

Export Citation Format

Share Document