ecm fungi
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 34)

H-INDEX

13
(FIVE YEARS 3)

Author(s):  
Sai Gong ◽  
Bang Feng ◽  
Si-Peng Jian ◽  
Geng Shen Wang ◽  
Zai-Wei Ge ◽  
...  

Altitude and season represent two important environmental gradients that shape the structure of biome, including the heterogeneity of EcM fungi. Previous studies have separately considered the influences of altitude and season on EcM fungal communities, but the relative importance of altitude and season is still unknown.


2021 ◽  
Vol 145 (11-12) ◽  
pp. 547-556
Author(s):  
Marina Milović ◽  
Saša Orlović ◽  
Zoran Galić ◽  
Saša Pekeč ◽  
Branislav Kovačević ◽  
...  

Although sessile oak is one of the most important deciduous forest tree species in Europe, data on the diversity of ectomycorrhizal (ECM) fungi on sessile oaks in the Republic of Serbia are scarce. The aim of this study was to provide the first insight into the diversity of ECM fungi on sessile oak in Serbia. Two sites Info center and Brankovac, located in National Park Fruška gora were chosen. ECM fungi were identified combining morphological and anatomical characterization with molecular analysis of nuclear rDNA internal transcribed spacer (ITS) region. All vital ECM root tips were counted, diversity indices were calculated, and ECM fungi were classified into the exploration types. The granulometric and chemical composition of soil were analyzed as well. At both sites, 26 different ECM fungal taxa were recorded in total, 17 taxa were observed at the site Info center and 12 taxa at Brankovac. ECM communities consisted of a few abundant taxa and a larger number of rare taxa. Lactarius quietus, Cenococcum geophilum, and Tomentella sublilacina were recorded at both sites. High abundance of contact and short-distance exploration types recorded in studied stands suggests that soils are sufficiently rich in total nitrogen and organic matter. Values of diversity indices recorded in studied sessile oak stands from Fruška gora were lower in comparison to those obtained in stands of different oak species across Europe which is likely induced by drought. To get a more thorough insight into the diversity of ECM fungi on sessile oak, research should be continued at more sites and seasonal dynamics should be included.


2021 ◽  
Vol 9 (12) ◽  
pp. 2612
Author(s):  
Joske Ruytinx ◽  
Shingo Miyauchi ◽  
Sebastian Hartmann-Wittulsky ◽  
Maíra de Freitas Pereira ◽  
Frédéric Guinet ◽  
...  

Trees are able to colonize, establish and survive in a wide range of soils through associations with ectomycorrhizal (EcM) fungi. Proper functioning of EcM fungi implies the differentiation of structures within the fungal colony. A symbiotic structure is dedicated to nutrient exchange and the extramatricular mycelium explores soil for nutrients. Eventually, basidiocarps develop to assure last stages of sexual reproduction. The aim of this study is to understand how an EcM fungus uses its gene set to support functional differentiation and development of specialized morphological structures. We examined the transcriptomes of Laccaria bicolor under a series of experimental setups, including the growth with Populus tremula x alba at different developmental stages, basidiocarps and free-living mycelium, under various conditions of N, P and C supply. In particular, N supply induced global transcriptional changes, whereas responses to P supply seemed to be independent from it. Symbiosis development with poplar is characterized by transcriptional waves. Basidiocarp development shares transcriptional signatures with other basidiomycetes. Overlaps in transcriptional responses of L. bicolor hyphae to a host plant and N/C supply next to co-regulation of genes in basidiocarps and mature mycorrhiza were detected. Few genes are induced in a single condition only, but functional and morphological differentiation rather involves fine tuning of larger gene sets. Overall, this transcriptomic atlas builds a reference to study the function and stability of EcM symbiosis in distinct conditions using L. bicolor as a model and indicates both similarities and differences with other ectomycorrhizal fungi, allowing researchers to distinguish conserved processes such as basidiocarp development from nutrient homeostasis.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12076
Author(s):  
Jacek Olchowik ◽  
Dorota Hilszczańska ◽  
Marcin Studnicki ◽  
Tadeusz Malewski ◽  
Khalil Kariman ◽  
...  

Background Global warming and drying have markedly enhanced in most forests the risk of fires across the world, which can affect the taxonomic and functional composition of key tree-associated organisms such as ectomycorrhizal (ECM) fungi. The present study was conducted to characterise the alterations in the extent of root ECM colonisation, the ECM fungal communities, and their exploration types (i.e., indicator of ECM soil foraging strategies) in regenerated pines within a burned site as compared with an unburned site (five years after the fire event) in the Forest District Myszyniec, Poland. Methods To assess the ECM fungal communities of burned and control sites, soil soil-root monoliths were collected from the study sites in September 2019. A total of 96 soil subsamples were collected for soil analysis and mycorrhizal assessment (6 trees × 2 sites × 4 study plots × 2 microsites (north and south) = 96 subsamples). Results The percentage of root ECM colonisation was significantly lower in the burned site in comparison with the unburned (control) site. However, the ECM species richness did not differ between the control and burned sites. The identified ECM species in both sites were Imleria badia, Thelephora terrestris, Russula paludosa, R. badia, R. turci, R. vesca, Lactarius plumbeus, Phialocephala fortinii, and Hyaloscypha variabilis. The most frequent species in the burned and control sites were I. badia and T. terrestris, respectively. The relative abundances of contact, medium-distance smooth and long-distance exploration types in the burned site were significantly different from the control site, dominated by the medium-distance exploration type in both sites. The abundance of the long-distance exploration type in the burned site was markedly greater (27%) than that of the control site (14%), suggesting that the fire event had favoured this ECM foraging strategy. The results demonstrated that the fire led to reduced ECM colonisation of Scots pine trees in the burned site whereas the species richness was not affected, which can be attributed to degrees of fire-resistance in the ECM species, survival of ECM propagules in deeper soil layers, and/or continuous entry of spores/propagules of the ECM fungi from the adjacent forests via wind, water run-off or animals.


2021 ◽  
Vol 2 ◽  
Author(s):  
Stefanie Hoeber ◽  
Christel Baum ◽  
Martin Weih ◽  
Stefano Manzoni ◽  
Petra Fransson

Soil fungi are strongly affected by plant species or genotypes since plants modify their surrounding environment, but the effects of plant genotype diversity on fungal diversity and function have not been extensively studied. The interactive responses of fungal community composition to plant genotypic diversity and environmental drivers were investigated in Salix biomass systems, posing questions about: (1) How fungal diversity varies as a function of plant genotype diversity; (2) If plant genotype identity is a strong driver of fungal community composition also in plant mixtures; (3) How the fungal communities change through time (seasonally and interannually)?; and (4) Will the proportion of ECM fungi increase over the rotation? Soil samples were collected over 4 years, starting preplanting from two Salix field trials, including four genotypes with contrasting phenology and functional traits, and genotypes were grown in all possible combinations (four genotypes in Uppsala, Sweden, two in Rostock, Germany). Fungal communities were identified, using Pacific Biosciences sequencing of fungal ITS2 amplicons. We found some site-dependent relationships between fungal community composition and genotype or diversity level, and site accounted for the largest part of the variation in fungal community composition. Rostock had a more homogenous community structure, with significant effects of genotype, diversity level, and the presence of one genotype (“Loden”) on fungal community composition. Soil properties and plant and litter traits contributed to explaining the variation in fungal species composition. The within-season variation in composition was of a similar magnitude to the year-to-year variation. The proportion of ECM fungi increased over time irrespective of plant genotype diversity, and, in Uppsala, the 4-mixture showed a weaker response than other combinations. Species richness was generally higher in Uppsala compared with that in Rostock and increased over time, but did not increase with plant genotype diversity. This significant site-specificity underlines the need for consideration of diverse sites to draw general conclusions of temporal variations and functioning of fungal communities. A significant increase in ECM colonization of soil under the pioneer tree Salix on agricultural soils was evident and points to changed litter decomposition and soil carbon dynamics during Salix growth.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sara Marañón-Jiménez ◽  
Dajana Radujković ◽  
Erik Verbruggen ◽  
Oriol Grau ◽  
Matthias Cuntz ◽  
...  

Ectomycorrhizal (EcM) and saprotrophic fungi interact in the breakdown of organic matter, but the mechanisms underlying the EcM role on organic matter decomposition are not totally clear. We hypothesized that the ecological relations between EcM and saprotroph fungi are modulated by resources availability and accessibility, determining decomposition rates. We manipulated the amount of leaf litter inputs (No-Litter, Control Litter, Doubled Litter) on Trenched (root exclusion) and Non-Trenched plots (with roots) in a temperate deciduous forest of EcM-associated trees. Resultant shifts in soil fungal communities were determined by phospholipid fatty acids and DNA sequencing after 3 years, and CO2 fluxes were measured throughout this period. Different levels of leaf litter inputs generated a gradient of organic substrate availability and accessibility, altering the composition and ecological relations between EcM and saprotroph fungal communities. EcM fungi dominated at low levels of fresh organic substrates and lower organic matter quality, where short-distances exploration types seem to be better competitors, whereas saprotrophs and longer exploration types of EcM fungi tended to dominate at high levels of leaf litter inputs, where labile organic substrates were easily accessible. We were, however, not able to detect unequivocal signs of competition between these fungal groups for common resources. These results point to the relevance of substrate quality and availability as key factors determining the role of EcM and saprotroph fungi on litter and soil organic matter decay and represent a path forward on the capacity of organic matter decomposition of different exploration types of EcM fungi.


MycoKeys ◽  
2021 ◽  
Vol 81 ◽  
pp. 45-68
Author(s):  
Peter Meidl ◽  
Brendan Furneaux ◽  
Kassim I. Tchan ◽  
Kerri Kluting ◽  
Martin Ryberg ◽  
...  

Forests and woodlands in the West African Guineo-Sudanian transition zone contain many tree species that form symbiotic interactions with ectomycorrhizal (ECM) fungi. These fungi facilitate plant growth by increasing nutrient and water uptake and include many fruiting body-forming fungi, including some edible mushrooms. Despite their importance for ecosystem functioning and anthropogenic use, diversity and distribution of ECM fungi is severely under-documented in West Africa. We conducted a broad regional sampling across five West African countries using soil eDNA to characterize the ECM as well as the total soil fungal community in gallery forests and savanna woodlands dominated by ECM host tree species. We subsequently sequenced the entire ITS region and much of the LSU region to infer a phylogeny for all detected soil fungal species. Utilizing a long read sequencing approach allows for higher taxonomic resolution by using the full ITS region, while the highly conserved LSU gene allows for a more accurate higher-level assignment of species hypotheses, including species without ITS-based taxonomy assignments. We detect no overall difference in species richness between gallery forests and woodlands. However, additional gallery forest plots and more samples per plot would have been needed to firmly conclude this pattern. Based on both abundance and richness, species from the families Russulaceae and Inocybaceae dominate the ECM fungal soil communities across both vegetation types. The community structure of both total soil fungi and ECM fungi was significantly influenced by vegetation types and showed strong correlation within plots. However, we found no significant difference in fungal community structure between samples collected adjacent to different host tree species within each plot. We conclude that within plots, the fungal community is structured more by the overall ECM host plant community than by the species of the individual host tree that each sample was collected from.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 719
Author(s):  
Xiangjun Li ◽  
Wensi Kang ◽  
Size Liu ◽  
Haifeng Yin ◽  
Qian Lyu ◽  
...  

Ectomycorrhizal (ECM) fungi can form symbioses with plant roots, which play an important role in regulating the rhizosphere microenvironment. As a broad-spectrum ECM tree species, Pinus massoniana forms symbiotic relationship called mycorrhiza with various ECM fungal species. In this study, four types of forests were selected from a 38-year-old Pinus plantation in eastern Sichuan, namely, pure P. massoniana forest (MC), P. massoniana mixed with Cunninghamia lanceolata forest (MS), P. massoniana–Cryptomeria fortunei forest (ML), and P. massoniana–broadleaved forest (MK), the species mixture ratio of all forests was 1:1. The ITS2 segment of ECM root tip sequenced by high-throughput sequencing using the Illumina MiSeq sequencing platform. (1) The ECM fungi of these four P. massoniana forests showed similar dominant genera but different relative abundances in community structure during the three seasons. (2) The alpha diversity index of ECM fungi was significantly influenced by season and forest type. (3) Soil pH, soil organic matter (SOM), total nitrogen (TN), C/N ratio, and total phosphorus (TP) influenced the ECM fungal community structure in different seasons. In summary, there were significant differences in ECM fungal communities among different forest types and different seasons; the colonization rate of ECM fungal in P. massoniana–Cunninghamia lanceolata was the highest, so we infer that Cunninghamia lanceolata is the most suitable tree species for mixed with P. massoniana in three mixture forests.


2021 ◽  
Vol 12 ◽  
Author(s):  
Petra Veselá ◽  
Martina Vašutová ◽  
Magda Edwards-Jonášová ◽  
Filip Holub ◽  
Peter Fleischer ◽  
...  

Due to ongoing climate change, forests are expected to face significant disturbances more frequently than in the past. Appropriate management is intended to facilitate forest regeneration. Because European temperate forests mostly consist of trees associated with ectomycorrhizal (ECM) fungi, understanding their role in these disturbances is important to develop strategies to minimize their consequences and effectively restore forests. Our aim was to determine how traditional (EXT) and nonintervention (NEX) management in originally Norway spruce (Picea abies) forests with an admixture of European larch (Larix decidua) affect ECM fungal communities and the potential to interconnect different tree species via ECM networks 15 years after a windstorm. Ten plots in NEX and 10 plots in EXT with the co-occurrences of Norway spruce, European larch, and silver birch (Betula pendula) were selected, and a total of 57 ECM taxa were identified using ITS sequencing from ECM root tips. In both treatments, five ECM species associated with all the studied tree species dominated, with a total abundance of approximately 50% in the examined root samples. Because there were no significant differences between treatments in the number of ECM species associated with different tree species combinations in individual plots, we concluded that the management type did not have a significant effect on networking. However, management significantly affected the compositions of ECM symbionts of Norway spruce and European larch but not those of silver birch. Although this result is explained by the occurrence of seedlings and ECM propagules that were present in the original forest, the consequences are difficult to assess without knowledge of the ecology of different ECM symbionts.


2021 ◽  
Vol 78 (2) ◽  
pp. 112-122
Author(s):  
J. Kumar ◽  
◽  
N.S. Atri ◽  

In the course of the present study, surveys on occurrence and distribution of ectomycorrhizal (EcM) fungi in tropical sal forests of foothills of the Himalayas, India, were undertaken. The species of two genera of agarics, namely Asproinocybe and Inocybe, were found organically associated with the roots of Shorea robusta (sal tree). However, prior to our study the genus Asproinocybe has not been reported from India. In this article, the morpho-anatomical details of mycorrhizal roots of Shorea robusta associated with Asproinocybe lactifera and Inocybe purpureoflavida are provided for the first time. The EcM colonized roots of the two species are distinguished by differences in the shape and colour of the roots, surface texture, size and shape of cystidia, type of mantle, as well as different chemical reactions. Asproinocybe lactifera EcM is mainly characterised by a monopodial pinnate mycorrhizal system with the dark brown to reddish brown and loose cottony surface, while in Inocybe purpureoflavida it is irregularly pinnate to coralloid, silvery grey to reddish brown, with densely woolly surface. The outer mantle layer is heterogeneous with obclavate to awl-shaped cystidia in Asproinocybe lactifera, whereas Inocybe purpureoflavida EcM have a plectenchymatous outer mantle with subcylindrical to obclavate metuloidal and non-metuloidal cystidia. The presence of lactifers in the mantle is a unique feature in Asproinocybe lactifera as compared to Inocybe purpureoflavida.


Sign in / Sign up

Export Citation Format

Share Document