phylogenetic identification
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 22)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Vol 951 (1) ◽  
pp. 012002
Author(s):  
A Khakimov ◽  
I Salakhutdinov ◽  
A Omolikov ◽  
S Utaganov

Abstract As it is known, a significant part of the yield of agricultural crops is lost due to harmful organisms, including diseases. The article reveals the data on the widespread types of plant diseases (rot, wilting, deformation, the formation of tumors, pustules, etc.) and their symptoms. Early identification of the pathogen type of plant infection is of high significance for disease control. Various methods are used to diagnose pathogens of disease on plant. This article discusses the review of the literature data on traditional methods for diagnosis of plant pathogens, such as visual observation, microscopy, mycological analysis, and biological diagnostics or the use of indicator plants. Rapid and reliable detection of plant disease and identification of its pathogen is the first and most important stage in disease control. Early identification of the cause of the disease allows timely selection of the proper protection method and ensures prevention of crop losses. There are a number of traditional methods for identifying plant diseases, however, in order to ensure the promptness and reliability of diagnostics, as well as to eliminate the shortcomings inherent in traditional diagnostics, in recent years, new means and technologies for identifying pathogens have been developed and introduced into practice. As well as the article provides information on such innovative methods of diagnosis of diseases and identification of their pathogens, which are used widely in the world today, such as immunodiagnostics, molecular-genetic (and phylogenetic) identification, mass spectrometry, etc.


2021 ◽  
Author(s):  
Dimitra Sakoula ◽  
Garrett J. Smith ◽  
Jeroen Frank ◽  
Rob J. Mesman ◽  
Linnea F. M. Kop ◽  
...  

AbstractThe advance of metagenomics in combination with intricate cultivation approaches has facilitated the discovery of novel ammonia-, methane-, and other short-chain alkane-oxidizing microorganisms, indicating that our understanding of the microbial biodiversity within the biogeochemical nitrogen and carbon cycles still is incomplete. The in situ detection and phylogenetic identification of novel ammonia- and alkane-oxidizing bacteria remain challenging due to their naturally low abundances and difficulties in obtaining new isolates from complex samples. Here, we describe an activity-based protein profiling protocol allowing cultivation-independent unveiling of ammonia- and alkane-oxidizing bacteria. In this protocol, 1,7-octadiyne is used as a bifunctional enzyme probe that, in combination with a highly specific alkyne-azide cycloaddition reaction, enables the fluorescent or biotin labeling of cells harboring active ammonia and alkane monooxygenases. Biotinylation of these enzymes in combination with immunogold labeling revealed the subcellular localization of the tagged proteins, which corroborated expected enzyme targets in model strains. In addition, fluorescent labeling of cells harboring active ammonia or alkane monooxygenases provided a direct link of these functional lifestyles to phylogenetic identification when combined with fluorescence in situ hybridization. Furthermore, we show that this activity-based labeling protocol can be successfully coupled with fluorescence-activated cell sorting for the enrichment of nitrifiers and alkane-oxidizing bacteria from complex environmental samples, enabling the recovery of high-quality metagenome-assembled genomes. In conclusion, this study demonstrates a novel, functional tagging technique for the reliable detection, identification, and enrichment of ammonia- and alkane-oxidizing bacteria present in complex microbial communities.


2021 ◽  
Vol 877 (1) ◽  
pp. 012024
Author(s):  
Warqaa Y. Salih ◽  
Fikrat M. Hassan

Abstract The purpose of this study is to use eDNA in the biodiversity of the Tigris river’s sediment. Algal samples were collected and examined under light microscopy. The collected algae were cultured, and after their growth, the DNA extractions were made from culture and amplified 16S ribosomal RNA gene partial sequences data by Polymerase Chain Reaction (PCR). Phylogenetic identification of species was conducted by the evaluation of obtained sequence analysis data by using computer software. Leptolyngbya benthonica (MN 714226.1) and Nostoc paludosum (MN 714225.1) were identified by molecular analysis and registered at NCBI and considered as a new record to the algal flora of Iraq. Implementing molecular data in the taxonomy of species will be essential to solve the taxonomic problems associated with microscopic methods.


2021 ◽  
Author(s):  
Mehrnoush Tangestani ◽  
Paul Broady ◽  
Arvind Varsani

Aim: To explore seaweed-associated bacteria as prospective producers of bioactive material with antibacterial properties. Materials & methods: 143 bacterial species were isolated from the surface of 15 New Zealand marine macroalgae. Bacterial extracts obtained using dimethyl sulfoxide and ethyl acetate were screened for antagonistic activities against three antimicrobial susceptibility indicators: Kocuria rhizophila, Staphylococcus epidermidis and Escherichia coli, using well-diffusion method. For selected species, minimum inhibitory concentration was determined, followed by a phylogenetic identification based on 16S rRNA gene sequences. Results: Among all bacteria screened, seven that belonged to the genera Vibrio, Pseudoalteromonas, Psychromonas and Cobetia, showed antagonistic activity against all three indicators. Conclusion: Seaweed-associated bacteria produce bioactive compounds with antimicrobial potential and possible biomedical application in aquatic habitats.


Author(s):  
Reyhaneh JAFARI ◽  
Nafiseh Sadat NAGHAVI ◽  
Kianoush KHOSRAVI-DARANI ◽  
Monir DOUDI ◽  
Kahin SHAHANIPOUR

2021 ◽  
Vol 114 (3) ◽  
pp. 235-251
Author(s):  
Dipen Pulami ◽  
Thorsten Schauss ◽  
Tobias Eisenberg ◽  
Jochen Blom ◽  
Oliver Schwengers ◽  
...  

AbstractThe Gram-stain-negative, oxidase negative, catalase positive strain KPC-SM-21T, isolated from a digestate of a storage tank of a mesophilic German biogas plant, was investigated by a polyphasic taxonomic approach. Phylogenetic identification based on the nearly full-length 16S rRNA gene revealed highest gene sequence similarity to Acinetobacter baumannii ATCC 19606T (97.0%). Phylogenetic trees calculated based on partial rpoB and gyrB gene sequences showed a distinct clustering of strain KPC-SM-21T with Acinetobacter gerneri DSM 14967T = CIP 107464T and not with A. baumannii, which was also supported in the five housekeeping genes multilocus sequence analysis based phylogeny. Average nucleotide identity values between whole genome sequences of strain KPC-SM-21T and next related type strains supported the novel species status. The DNA G + C content of strain KPC-SM-21T was 37.7 mol%. Whole-cell MALDI-TOF MS analysis supported the distinctness of the strain to type strains of next related Acinetobacter species. Predominant fatty acids were C18:1 ω9c (44.2%), C16:0 (21.7%) and a summed feature comprising C16:1 ω7c and/or iso-C15:0 2-OH (15.3%). Based on the obtained genotypic, phenotypic and chemotaxonomic data we concluded that strain KPC-SM-21T represents a novel species of the genus Acinetobacter, for which the name Acinetobacter stercoris sp. nov. is proposed. The type strain is KPC-SM-21T (= DSM 102168T = LMG 29413T).


2021 ◽  
Author(s):  
Dimitra Sakoula ◽  
Garrett J. Smith ◽  
Jeroen Frank ◽  
Rob J. Mesman ◽  
Linnea F.M. Kop ◽  
...  

AbstractThe advance of metagenomics in combination with intricate cultivation approaches has facilitated the discovery of novel ammonia- and methane-oxidizing microorganisms, indicating that our understanding of the microbial biodiversity within the biogeochemical nitrogen and carbon cycles still is incomplete. However, the in situ detection and phylogenetic identification of novel ammonia- and methane-oxidizing bacteria remains a challenge. Here, we describe an activity-based protein profiling protocol allowing cultivation-independent unveiling of ammonia- and methane-oxidizing bacteria. In this protocol, 1,7-octadiyne is used as a bifunctional enzyme probe that, in combination with a highly specific alkyne-azide cycloaddition reaction, enables the fluorescent or biotin labelling of cells harboring active ammonia and methane monooxygenases. The biotinylation of these enzymes in combination with immunogold labelling reveals the subcellular localization of the tagged proteins, while the fluorescent labelling of cells harboring active ammonia or methane monooxygenases provides a direct link of these functional lifestyles to phylogenetic identification when combined with fluorescence in situ hybridization. Furthermore, we show that this activity-based labelling protocol can be successfully coupled with fluorescence-activated cell sorting for the enrichment of nitrifiers and methanotrophs from complex environmental samples, facilitating the retrieval of their high quality metagenome-assembled genomes. In conclusion, this study demonstrates a novel, functional tagging technique for the reliable detection, identification, and enrichment of ammonia- and methane-oxidizing bacteria present in complex microbial communities.


Sign in / Sign up

Export Citation Format

Share Document