gap fraction
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 22)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Francesco Chianucci ◽  
Carlotta Ferrara ◽  
Nicola Puletti

Digital Cover Photography (DCP) is an increasingly popular tool for estimating canopy cover and leaf area index (LAI). However, existing solutions to process canopy images are predominantly tailored for fisheye photography, whereas open-access tools for DCP are lacking. We developed an R package (coveR) to support the whole processing of DCP images in an automated, fast and reproducible way. The package functions, which are designed for step-by-step single-image analysis, can be performed sequentially in a pipeline and also allow simple implementation of batch-processing bunches of images. A case study is presented to demonstrate the reliability of canopy attributes derived from coveR in pure beech (Fagus sylvatica L.) stands with variable canopy density and structure. Estimates of gap fraction and effective LAI from DCP were validated against reference measurements obtained from terrestrial laser scanning. By providing a simple, transparent and flexible image processing procedure, coveR supported the use of DCP for routine measurements and monitoring of forest canopy attributes. This, combined with the implementability of DCP in many devices, including smartphones, micro-cameras, and remote trail cameras, can greatly expand the accessibility of the method also to non-experts.


2021 ◽  
Author(s):  
Adam Erickson ◽  
Nicholas Coops

Reliable estimates of canopy light transmission are critical to understanding the structure and function of vegetation communities but are difficult and costly to attain by traditional field inventory methods. Airborne laser scanning (ALS) data uniquely provide multi-angular vertically resolved representation of canopy geometry across large geographic areas. While previous studies have proposed ALS indices of canopy light transmission, new algorithms based on theoretical advancements may improve existing models. Herein, we propose two new models of canopy light transmission (i.e., gap fraction, or Po, the inverse of angular canopy closure). We demonstrate the models against a suite of existing models and ancillary metrics, validated against convex spherical densiometer measurements for 950 field plots in the foothills of Alberta, Canada. We also tested the effects of synthetic hemispherical lens models on the performance of the proposed hemispherical Voronoi gap fraction (Phv) index. While vertical canopy cover metrics showed the best overall fit to field measurements, one new metric, point-density-normalized gap fraction (Ppdn), outperformed all other gap fraction metrics by two-fold. We provide suggestions for further algorithm enhancements based on validation data improvements. We argue that traditional field measurements are no longer appropriate for ‘ground-truthing’ modern LiDAR or SfM point cloud models, as the latter provide orders of magnitude greater sampling and coverage. We discuss the implications of this finding for LiDAR applications in forestry.


2021 ◽  
Vol 13 (18) ◽  
pp. 3751
Author(s):  
Bitam Ali ◽  
Feng Zhao ◽  
Zhenjiang Li ◽  
Qichao Zhao ◽  
Jiabei Gong ◽  
...  

The maturity and affordability of light detection and ranging (LiDAR) sensors have made possible the quick acquisition of 3D point cloud data to monitor phenotypic traits of vegetation canopies. However, while the majority of studies focused on the retrieval of macro scale parameters of vegetation, there are few studies addressing the reconstruction of explicit 3D structures from terrestrial LiDAR data and the retrieval of fine scale parameters from such structures. A challenging problem that arises from the latter studies is the need for a large amount of data to represent the various components in the actual canopy, which can be time consuming and resource intensive for processing and for further applications. In this study, we present a pipeline to reconstruct the 3D maize structures composed of triangle primitives based on multi-view terrestrial LiDAR measurements. We then study the sensitivity of the details with which the canopy architecture was represented for the computation of leaf angle distribution (LAD), leaf area index (LAI), gap fraction, and directional reflectance factors (DRF). Based on point clouds of a maize field in three stages of growth, we reconstructed the reference structures, which have the maximum number of triangles. To get a compromise between the details of the structure and accuracy reserved for later applications, we carried out a simplified process to have multiple configurations of details based on the decimation rate and the Hausdorff distance. Results show that LAD is not highly sensitive to the details of the structure (or the number of triangles). However, LAI, gap fraction, and DRF are more sensitive, and require a relatively high number of triangles. A choice of 100−500 triangles per leaf while maintaining the overall shapes of the leaves and a low Hausdorff distance is suggested as a good compromise to represent the canopy and give an overall accuracy of 98% for the computation of the various parameters.


2021 ◽  
Vol 13 (7) ◽  
pp. 1405
Author(s):  
Jun Geng ◽  
Gang Yuan ◽  
J. M. Chen ◽  
Chunguang Lyu ◽  
Lili Tu ◽  
...  

As a widely used ground-based optical instrument, the LAI-2000 or LAI-2200 plant canopy analyzer (PCA) (Li-Cor, Inc., Lincoln, NE) is designed to measure the plant effective leaf area index (Le) by measuring the canopy gap fraction at several limited or discrete view zenith angles (VZAs) (usually five VZAs: 7, 23, 38, 53, and 68°) based on Miller’s equation. Miller’s equation requires the probability of radiative transmission through the canopy to be measured over the hemisphere, i.e., VZAs in the range from 0 to 90°. However, the PCA view angle ranges are confined to several limited ranges or discrete sectors. The magnitude of the error produced by the discretization of VZAs in the leaf area index measurements remains difficult to determine. In this study, a theoretical deduction was first presented to definitely prove why the limited or discrete VZAs or ranges can affect the Le measured with the PCA, and the specific error caused by the limited or discrete VZAs was described quantitatively. The results show that: (1) the weight coefficient of the last PCA ring is the main cause of the error; (2) the error is closely related to the leaf inclination angles (IAs)—the Le measured with the PCA can be significantly overestimated for canopies with planophile IAs, whereas it can be underestimated for erectophile IAs; and (3) the error can be enhanced with the increment of the discrete degree of PCA rings or VZAs, such as using four or three PCA rings. Two corrections for the error are presented and validated in three crop canopies. Interestingly, although the leaf IA type cannot influence the Le calculated by Miller’s equation in the hemispheric space, it affects the Le measured with the PCA using the discrete form of Miller’s equation for several discrete VZAs.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 128
Author(s):  
Susanne Jochner-Oette ◽  
Tanja Rohrer ◽  
Anna-Katharina Eisen ◽  
Selina Tönnes ◽  
Barbara Stammel

Background and Objectives: The existence of common ash (Fraxinus excelsior) in Europe is severely endangered by ash dieback. To support its future sustainability, it is essential to improve the natural ash regeneration. The main aim of this study was to investigate the influence of light conditions, conceivably influenced by stand structure/ash dieback, on ash regeneration and the competition between ash seedlings and species growing in the understory. Materials and Methods: We selected 40 plots in a riparian forest located in Bavaria, Germany. Light-related variables (Leaf Area Index, gap fraction) were gathered with fish-eye photography, whereas other environmental factors were derived from vegetation surveys (Ellenberg indicator values). We assessed vegetation parameters such as species’ richness and coverage of the herb layer to account for competition with ash seedlings. Results: Our results indicate that ash regeneration is favoured under shady conditions. The majority of other abiotic factors were not statistically associated with the analysed ash metrics. In contrast, the coverage of grass was negatively related to LAI and positively to gap fraction. Higher herb and grass coverages were linked to a suppression of ash regeneration. A higher litter coverage was associated with a higher frequency of ash seedlings. Nonparametric partial correlation analyses demonstrated the influence of light and stressed that litter coverage is of particular importance. Conclusions: We conclude that gaps, inter alia induced by ash dieback, favour grass invasion. In turn, this invasion might suppress regeneration of ash. In this regard, rapid silvicultural management such as reforestation of gaps after dieback of mature trees is recommended. The influence of litter on interspecific competition during growth should be also considered. The pace of dieback might additionally influence the timing and quantity of litter accumulation; thus, further research should also focus on these interrelations.


2020 ◽  
Vol 13 (1) ◽  
pp. 77
Author(s):  
Tianyu Hu ◽  
Xiliang Sun ◽  
Yanjun Su ◽  
Hongcan Guan ◽  
Qianhui Sun ◽  
...  

Accurate and repeated forest inventory data are critical to understand forest ecosystem processes and manage forest resources. In recent years, unmanned aerial vehicle (UAV)-borne light detection and ranging (lidar) systems have demonstrated effectiveness at deriving forest inventory attributes. However, their high cost has largely prevented them from being used in large-scale forest applications. Here, we developed a very low-cost UAV lidar system that integrates a recently emerged DJI Livox MID40 laser scanner (~$600 USD) and evaluated its capability in estimating both individual tree-level (i.e., tree height) and plot-level forest inventory attributes (i.e., canopy cover, gap fraction, and leaf area index (LAI)). Moreover, a comprehensive comparison was conducted between the developed DJI Livox system and four other UAV lidar systems equipped with high-end laser scanners (i.e., RIEGL VUX-1 UAV, RIEGL miniVUX-1 UAV, HESAI Pandar40, and Velodyne Puck LITE). Using these instruments, we surveyed a coniferous forest site and a broadleaved forest site, with tree densities ranging from 500 trees/ha to 3000 trees/ha, with 52 UAV flights at different flying height and speed combinations. The developed DJI Livox MID40 system effectively captured the upper canopy structure and terrain surface information at both forest sites. The estimated individual tree height was highly correlated with field measurements (coniferous site: R2 = 0.96, root mean squared error/RMSE = 0.59 m; broadleaved site: R2 = 0.70, RMSE = 1.63 m). The plot-level estimates of canopy cover, gap fraction, and LAI corresponded well with those derived from the high-end RIEGL VUX-1 UAV system but tended to have systematic biases in areas with medium to high canopy densities. Overall, the DJI Livox MID40 system performed comparably to the RIEGL miniVUX-1 UAV, HESAI Pandar40, and Velodyne Puck LITE systems in the coniferous site and to the Velodyne Puck LITE system in the broadleaved forest. Despite its apparent weaknesses of limited sensitivity to low-intensity returns and narrow field of view, we believe that the very low-cost system developed by this study can largely broaden the potential use of UAV lidar in forest inventory applications. This study also provides guidance for the selection of the appropriate UAV lidar system and flight specifications for forest research and management.


2020 ◽  
Vol 12 (24) ◽  
pp. 4163
Author(s):  
Frederick N. Numbisi ◽  
Frieke Van Coillie

A reliable estimation and monitoring of tree canopy cover or shade distribution is essential for a sustainable cocoa production via agroforestry systems. Remote sensing (RS) data offer great potential in retrieving and monitoring vegetation status at landscape scales. However, parallel advancements in image processing and analysis are required to appropriately use such data for different targeted applications. This study assessed the potential of Sentinel-1A (S-1A) C-band synthetic aperture radar (SAR) backscatter in estimating canopy cover variability in cocoa agroforestry landscapes. We investigated two landscapes, in Center and South Cameroon, which differ in predominant vegetation: forest-savannah transition and forest landscape, respectively. We estimated canopy cover using in-situ digital hemispherical photographs (DHPs) measures of gap fraction, verified the relationship with SAR backscatter intensity and assessed predictions based on three machine learning approaches: multivariate bootstrap regression, neural networks regression, and random forest regression. Our results showed that about 30% of the variance in canopy gap fraction in the cocoa production landscapes was shared by the used SAR backscatter parameters: a combination of S-1A backscatter intensity, backscatter coefficients, difference, cross ratios, and normalized ratios. Based on the model predictions, the VV (co-polarization) backscatter showed high importance in estimating canopy gap fraction; the VH (cross-polarized) backscatter was less sensitive to the estimated canopy gap. We observed that a combination of different backscatter variables was more reliable at predicting the canopy gap variability in the considered type of vegetation in this study—agroforests. Semi-variogram analysis of canopy gap fraction at the landscape scale revealed higher spatial clustering of canopy gap, based on spatial correlation, at a distance range of 18.95 m in the vegetation transition landscape, compared to a 51.12 m spatial correlation range in the forest landscape. We provide new insight on the spatial variability of canopy gaps in the cocoa landscapes which may be essential for predicting impacts of changing and extreme (drought) weather conditions on farm management and productivity. Our results contribute a proof-of-concept in using current and future SAR images to support management tools or strategies on tree inventorying and decisions regarding incentives for shade tree retention and planting in cocoa landscapes.


2020 ◽  
Vol 12 (18) ◽  
pp. 2925
Author(s):  
Thomas Miraglio ◽  
Karine Adeline ◽  
Margarita Huesca ◽  
Susan Ustin ◽  
Xavier Briottet

Gap Fraction, leaf pigment contents (content of chlorophylls a and b (Cab) and carotenoids content (Car)), Leaf Mass per Area (LMA), and Equivalent Water Thickness (EWT) are considered relevant indicators of forests’ health status, influencing many biological and physical processes. Various methods exist to estimate these variables, often relying on the extensive use of Radiation Transfer Models (RTMs). While 3D RTMs are more realistic to model open canopies, their complexity leads to important computation times that limit the number of simulations that can be considered; 1D RTMs, although less realistic, are also less computationally expensive. We investigated the possibility to approximate the outputs of a 3D RTM (DART) from a 1D RTM (PROSAIL) to generate in very short time numerous extensive Look-Up Tables (LUTs). The intrinsic error of the approximation model was evaluated through comparison with DART reference values. The model was then used to generate LUTs used to estimate Gap Fraction, Cab, Car, EWT, and LMA of Blue Oak-dominant stands in a woodland savanna from AVIRIS-C data. Performances of the approximation model for estimation purposes compared to DART were evaluated using Wilmott’s index of agreement (dr), and estimation accuracy was measured with coefficients of determination (R2) and Root Mean Squared Error (RMSE). The low approximation error of the proposed model demonstrated that the model could be considered for canopy covers as low as 30%. Gap Fraction estimations presented similar performances with either DART or the approximation (dr 0.78 and 0.77, respectively), while Cab and Car showed improved performances (dr increasing from 0.65 to 0.77 and 0.34 to 0.65, respectively). No satisfying estimation methods were found for LMA and EWT using either models, probably due to the high sensitivity of the scene’s reflectance to Gap Fraction and soil modeling at such low LAI. Overall, estimations using the approximated reflectances presented either similar or improved accuracy. Our findings show that it is possible to approximate DART reflectances from PROSAIL using a minimal number of DART outputs for calibration purposes, drastically reducing computation times to generate reflectance databases: 300,000 entries could be generated in 1.5 h, compared to the 12,666 total CPU hours necessary to generate the 21,840 calibration entries with DART.


Author(s):  
K. R. Dayal ◽  
S. Durrieu ◽  
S. Alleaume ◽  
F. Revers ◽  
E. Larmanou ◽  
...  

Abstract. Lidar scan angle can affect estimation of lidar-derived forest metrics used in area-based approaches (ABAs). As commonly used first-order metrics and various user-developed metrics are computed in the form of a grid or a raster, their response to various scan angles needs to be investigated similarly. The objective of this study was to highlight the impact of scan angles on 11 metrics (9 height-based and 2 other commonly used metrics) at the level of the grid-cell. The study area was divided into a grid of cell size 30 m. In every grid-cell, the flight lines that sampled at least 90% area of the grid-cell were identified. The flight lines and the corresponding point clouds were then classified based on their mean scan angle into four classes 0°–10°, 10°–20°, 20°–30° and 30°–40°. Metrics were computed for one flight line per class for each grid-cell. This resulted in a maximum of four values for a metric in every grid-cell. Comparing these values revealed the evolving nature of the metrics with the scan angle. For the comparison we used a paired t-test and simple linear regression. We observed that most of the metrics were systematically under-estimated with increasing scan angle. Gap-fraction, rumple index were affected more than standard deviation of height while the maximum height was relatively stable. Among the height percentiles, the higher percentiles were relatively more stable compared to the lower percentiles. Scan angles can indeed have an impact on the estimation of lidar derived metrics. Although, many of the metrics studied showed statistically significant differences in their computation for different scan angles, their impact on the accuracies of ABA models needs to be studied further by accounting for the differences as shown in this study.


Sign in / Sign up

Export Citation Format

Share Document