deposition efficiency
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 100)

H-INDEX

27
(FIVE YEARS 4)

Author(s):  
Rogerio S. Lima

AbstractThere is a strong driving force to improve the production efficiency of thermal barrier coatings (TBCs) manufactured via air plasma spray (APS). To address this need, the high-enthalpy APS torch Axial III Plus was employed to successfully manufacture TBCs by spraying a commercial YSZ feedstock at powder feed rate of 100 g/min using an optimized set of N2/H2 spray parameters; which yielded an impressive YSZ deposition efficiency (DE) value of 70%. This exact same set of optimized spray parameters was used to manufacture the same identical YSZ TBC (over ~160 µm-thick bond-coated substrates) but at two distinct YSZ thickness levels: (i) ~420 µm-thick and (ii) ~930 µm-thick. In spite of the high YSZ feed rate and DE levels, the YSZ TBC revealed a ~14% porous (conventional looking) microstructure, without segmented cracking or horizontal delamination at both thickness levels. The bond strength values measured via the ASTM C633 standard for the ~420 µm-thick and ~930 µm-thick YSZ TBCs were ~13.0 and ~11.6 MPa (respectively); which are among at the upper end values reported in the literature. After the first objective was attained, the second key objective of this work was to evaluate the thermal insulating effectiveness of these two as-sprayed YSZ TBCs. To achieve this objective, a thermal gradient laser-rig was employed to generate a temperature reduction (ΔT) along the TBC-coated coupons under different laser power levels. These distinct laser power levels generated YSZ TBC surface temperatures varying for 1100 to 1500 °C, for the ~420 µm-thick YSZ TBC, and from 1100 to 1680 °C YSZ TBC ~930 µm-thick YSZ TBC. The respective ΔT values for both TBCs are reported. The results of this engineering paper are promising regarding the possibility of improving considerably the manufacturing efficiency of industrial quality conventional-looking porous YSZ TBCs, by using a high-enthalpy N2-based APS torch. This is the first paper published in the open literature showing R&D results of coatings manufactured via the Axial III Plus APS torch.


Author(s):  
Tatyana A. Brusentseva ◽  
◽  
Vladislav S. Shikalov ◽  
Sergei M. Lavruk ◽  
Vasily M. Fomin

The work is devoted to the deposition of composite powder materials by cold spray method. As a spraying material, a thermoplastic compound «WAY» for marking the roadway was used. An asphalt concrete was used as a substrate. As a result of experimental studies, the dependence of the deposition efficiency on the stagnation temperature of the working air in the ejector nozzle was obtained. The ANSYS Fluent package was used for evaluative modeling of the cold spraying process. Gas flow patterns were obtained in the computational domain without particles and taking into account the interaction of the flow with particles. The trajectory of the particles was calculated for various spraying parameters


Author(s):  
B. Moreno-Murguia ◽  
A.G. Mora-Garcia ◽  
H. Canales-Siller ◽  
A.L. Giraldo-Betancur ◽  
D.G. Espinosa-Arbelaez ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7221
Author(s):  
Xiyi Chen ◽  
Muzheng Xiao ◽  
Dawei Kang ◽  
Yuxin Sang ◽  
Zhijing Zhang ◽  
...  

Geometric characteristics provide an important means for characterization of the quality of direct laser deposition. Therefore, improving the accuracy of a prediction model is helpful for improving deposition efficiency and quality. The three main input variables are laser power, scanning speed, and powder-feeding rate, while the width and height of the melt track are used as outputs. By applying a multi-output support vector regression (M-SVR) model based on a radial basis function (RBF), a non-linear model for predicting the geometric features of the melt track is developed. An orthogonal experimental design is used to conduct the experiments, the results of which are chosen randomly as training and testing data sets. On the one hand, compared with single-output support vector regression (S-SVR) modeling, this method reduces the root mean square error of height prediction by 22%, with faster training speed and higher prediction accuracy. On the other hand, compared with a backpropagation (BP) neural network, the average absolute error in width is reduced by 5.5%, with smaller average absolute error and better generalization performance. Therefore, the established model can provide a reference to select direct laser deposition parameters precisely and can improve the deposition efficiency and quality.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3165
Author(s):  
Sara Trabucco ◽  
Simona Ortelli ◽  
Benedetta Del Secco ◽  
Ilaria Zanoni ◽  
Franco Belosi ◽  
...  

An automatic lab-scaled spray-coating machine was used to deposit Ag nanoparticles (AgNPs) on textile to create antibacterial fabric. The spray process was monitored for the dual purpose of (1) optimizing the process by maximizing silver deposition and minimizing fluid waste, thereby reducing suspension consumption and (2) assessing AgNPs release. Monitoring measurements were carried out at two locations: inside and outside the spray chamber (far field). We calculated the deposition efficiency (E), finding it to be enhanced by increasing the spray pressure from 1 to 1.5 bar, but to be lowered when the number of operating sprays was increased, demonstrating the multiple spray system to be less efficient than a single spray. Far-field AgNPs emission showed a particle concentration increase of less than 10% as compared to the background level. This finding suggests that under our experimental conditions, our spray-coating process is not a critical source of worker exposure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Göhler ◽  
Antje Geldner ◽  
Ralf Gritzki ◽  
Franz Lohse ◽  
Stephan Große ◽  
...  

AbstractPressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) is a promising approach with a high optimization potential for the treatment of peritoneal carcinomatosis. To study the efficacy of PIPAC and drugs, first rodent cancer models were developed. But inefficient drug aerosol supply and knowledge gaps concerning spatial drug distribution can limit the results based on such models. To study drug aerosol supply/deposition, computed tomography scans of a rat capnoperitoneum were used to deduce a virtual and a physical phantom of the rat capnoperitoneum (RCP). RCP qualification was performed for a specific PIPAC method, where the capnoperitoneum is continuously purged by the drug aerosol. In this context, also in-silico analyses by computational fluid dynamic modelling were conducted on the virtual RCP. The physical RCP was used for ex-vivo granulometric analyses concerning drug deposition. Results of RCP qualification show that aerosol deposition in a continuous purged rat capnoperitoneum depends strongly on the position of the inlet and outlet port. Moreover, it could be shown that the droplet size and charge condition of the drug aerosol define the deposition efficiency. In summary, the developed virtual and physical RCP enables detailed in-silico and ex-vivo analyses on drug supply/deposition in rodents.


2021 ◽  
Vol 13 (21) ◽  
pp. 12287
Author(s):  
Kristina Kljak ◽  
Marija Duvnjak ◽  
Dalibor Bedeković ◽  
Goran Kiš ◽  
Zlatko Janječić ◽  
...  

Commercial high-yielding corn hybrids have not been evaluated for their ability to pigment egg yolk. Therefore, the objective of this research was to investigate the effects of commercial hybrids with different carotenoid profiles as the only source of pigments in the diets of hens on yolk color and carotenoid content, as well as the carotenoid deposition efficiency into the yolk. Treatment diets, differing only in one of five corn hybrids, were offered in a completely randomized design in six cages per treatment, each with three hens. Treatment diets and yolks differed in carotenoid profile (contents of lutein, zeaxanthin, β-cryptoxanthin and β-carotene, p < 0.001), with total carotenoid contents ranging from 17.13–13.45 µg/g in diet and 25.99–21.97 µg/g in yolk. The treatments differed (p < 0.001) in yolk color, which was determined by yolk color fan (10.8–9.83) and CIE Lab (redness; range 12.47–10.05). The highest yolk color intensity was achieved by a diet with the highest content of zeaxanthin, β-cryptoxanthin and β-carotene. The deposition efficiency of lutein and zeaxanthin (25.52 and 26.05%, respectively) was higher than that of β-cryptoxanthin and β-carotene (8.30 and 5.65%, respectively), and the deposition efficiency of all carotenoids decreased with increasing dietary content. Commercial corn hybrids provided adequate yolk color and could be the only source of carotenoids in the diets of hens, which could reduce the cost of egg production and increase farmers’ income.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022075
Author(s):  
V Soloveva ◽  
S A Solovev ◽  
S I Kharchuk ◽  
L A Belousova ◽  
A R Talipova

Abstract In this work, a numerical simulation of the aerosol motion when flowing around a single porous filter fiber with a diameter of 5 mm is carried out. The fiber is formed by a set of microfibers in a random arrangement. The size of the microfibers varies from 0.1 mm to 0.5 mm. For each fixed size of microfibers, a fiber model with different porosity of the medium was created. The porosity ranged from 0.7 to 0.9. The calculations were carried out in the ANSYS software package (v. 19.0). Studies have shown that a porous filter fiber model provides the maximum deposition efficiency for highly inert particles is provided by a porous filter fiber model with a microfiber size of 0.1 mm and a medium porosity of 0.9.


Sign in / Sign up

Export Citation Format

Share Document